自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2497)
  • 收藏
  • 关注

原创 Llama Factory高效数据准备:从原始数据到微调就绪

通过本文,你已经了解了如何使用Llama Factory将原始数据转换为适合微调的格式。理解Alpaca和ShareGPT两种主要数据格式掌握从原始数据到微调就绪数据的完整流程学会处理常见问题和优化数据质量收集你的领域特定数据按照本文介绍的方法进行数据清洗和格式化开始你的第一个Llama模型微调实验记住,高质量的数据准备是成功微调的基础。花时间在数据准备阶段,往往能获得更好的模型性能。祝你微调顺利!

2026-01-09 15:29:52 302

原创 Llama Factory极速入门:午休时间就能完成的模型微调

准备 JSON 格式数据集,包含 "instruction"、"input"、"output" 字段放入data目录在界面选择「自定义数据集」

2026-01-09 15:29:11 220

原创 零基础玩转M2FP:预配置镜像带你快速入门人体解析

通过这篇教程,你已经掌握了使用预配置M2FP镜像进行人体解析的基本方法。这种开箱即用的解决方案特别适合不熟悉深度学习环境搭建的艺术设计专业学生和创作者。处理视频序列,分析人体动作变化结合其他模型(如姿势估计)增强解析效果开发自定义插件,将结果集成到设计软件中记得在毕业设计文档中合理引用使用的技术和模型。现在就去启动你的第一个M2FP实例,开始探索人体解析的无限可能吧!

2026-01-09 15:28:31 302

原创 毕业设计救星:用云端M2FP轻松完成计算机视觉项目

M2FP作为专业的多人体解析模型,能够帮助你快速实现毕设中的计算机视觉需求。通过云端部署方案,你可以完全跳过复杂的环境配置,直接专注于算法应用和结果分析。尝试用自己收集的图片测试模型效果调整参数观察不同设置下的解析精度将结果整合到毕设报告中,展示技术实现细节记住,好的毕设不一定要从零开始造轮子,合理利用现有工具和资源,同样能做出令人印象深刻的作品。祝各位同学顺利毕业!

2026-01-09 15:07:14 195

原创 M2FP跨平台应用:一套代码多端运行的秘密

M2FP是一种基于深度学习的多尺度多层次特征金字塔模型,专门用于人体解析任务。它能对图像中的人体各组件(如脸部、手臂、躯干等)进行精确识别和分割,输出带有语义标签的分割结果。多尺度特征提取:同时捕获全局和局部细节跨平台兼容性:设计之初就考虑了不同硬件环境的适配高效推理:优化后的网络结构在保持精度的同时降低计算开销典型应用场景:- 虚拟试衣间的人体部位识别- 健身动作分析- 人机交互界面开发通过本文,你已经了解了M2FP模型在跨平台人体解析应用中的核心优势和实践方法。

2026-01-09 15:05:53 82

原创 模型版本管理:LLaMA-Factory微调实验的可复现性指南

实验配置的版本控制训练环境的可复现性实验结果的系统化管理为团队建立统一的实验管理规范定期备份重要实验结果尝试将成功的实验配置转化为模板良好的实验管理习惯不仅能提高研究效率,也能让团队协作更加顺畅。现在就开始为你的下一个LLaMA-Factory微调实验建立版本控制吧!

2026-01-09 14:34:23 328

原创 零基础入门Llama Factory:10分钟快速搭建微调环境

Llama Factory支持多种数据格式。"instruction": "解释什么是人工智能","output": "人工智能是..."将文件放入data目录,然后在Web界面选择即可。通过本文,你已经学会了如何使用Llama Factory快速搭建大模型微调环境。相比传统方式,Llama Factory大大降低了技术门槛,让你可以专注于模型和数据的优化。尝试不同的模型和微调方法,比较它们的表现探索更复杂的数据集和任务类型学习如何将微调后的模型部署为API服务。

2026-01-09 14:29:32 468

原创 Llama Factory模型导出指南:轻松转换多种格式

通过本文的步骤,你应该已经掌握了使用 Llama Factory 导出模型的核心方法。这套方案最大的优势在于将复杂的格式转换过程标准化,让开发者能专注于模型效果优化而非工程细节。接下来可以尝试:- 实验不同的量化参数(4bit/8bit)- 为移动端导出 CoreML 格式- 结合 vLLM 部署导出的模型如果你在导出过程中遇到特殊问题,欢迎在评论区分享具体场景,我们可以一起探讨解决方案。现在就去试试导出你的第一个多格式模型吧!

2026-01-09 14:28:13 299

原创 高效微调指南:利用LLaMA Factory和预配置环境加速模型开发

作为一名AI研究员,你是否也遇到过这样的困扰:每次尝试不同的微调参数时,都要花费大量时间搭建环境?从CUDA版本冲突到依赖包缺失,这些琐碎的问题常常让我们无法专注于模型优化本身。今天,我将分享如何利用LLaMA Factory框架和预配置环境,快速搭建稳定高效的微调工作流。这类任务通常需要GPU环境支持,目前CSDN算力平台提供了包含LLaMA Factory的预置镜像,可以一键部署验证。但无论你选择哪种环境,本文的核心目标都是帮助你掌握高效微调的核心技巧。

2026-01-09 14:23:32 268

原创 AI编剧速成:用Llama Factory微调专属故事生成模型

作为一名编剧,你是否曾为创作灵感枯竭而苦恼?或是希望有一个能理解特定故事风格的AI助手?今天我要分享的Llama Factory微调方案,可以帮你快速打造一个专属的故事生成模型。整个过程无需编写代码,只需准备好你的剧本数据,就能训练出符合你创作风格的AI编剧助手。这类任务通常需要GPU环境,目前CSDN算力平台提供了包含该镜像的预置环境,可快速部署验证。Llama Factory是一个开源的低代码大模型微调框架,特别适合没有深度学习背景的创作者使用。下面我将详细介绍如何从零开始完成整个流程。

2026-01-09 14:09:55 275

原创 揭秘Llama Factory:如何用预置镜像10倍提升模型训练效率

通过本文介绍,你应该已经掌握了使用Llama Factory预置镜像快速开展大模型微调实验的方法。这种即开即用的方式特别适合需要快速迭代实验的研究场景,能让你将精力集中在算法改进而非环境配置上。对比不同基础模型的效果差异探索LoRA与其他高效微调技术的组合使用将训练好的模型部署为推理服务现在就可以选择一个你感兴趣的开源模型,开始你的第一个微调实验吧!实践中遇到的具体问题往往能带来最直接的成长,这也是AI研究的魅力所在。

2026-01-09 14:06:30 327

原创 AI 一键生成:ARCHLINUX 全自动安装脚本

通过 AI 生成的 ArchLinux 安装脚本,我成功将原本复杂的安装过程简化为一键操作。这种方法不仅提高了效率,还降低了学习门槛,让更多人能够轻松体验 ArchLinux 的强大功能。如果你也想尝试这种高效的安装方式,不妨去InsCode(快马)平台体验一下。整个过程无需安装任何软件,直接在网页上就能完成,对新手特别友好。我实际使用后发现,从描述需求到获得可执行脚本,真的只需要几分钟时间,比手动配置省心多了。

2026-01-09 14:05:44 597

原创 模型微调标准化:Llama Factory最佳实践指南

通过LLaMA-Factory实施标准化后,团队可获得:- 统一的技术评估基准- 可复现的实验结果- 更高效的模型迭代下一步可扩展:- 建立团队内部模型评测体系- 开发自动化训练监控脚本- 制定模型部署规范。

2026-01-09 14:04:58 183

原创 告别Excel:智能工龄计算效率提升指南

平台内置的AI辅助功能还能根据注释自动完善代码,遇到问题随时在编辑区提问获取解决方案,对非技术人员特别友好。过去我们部门每月都要用Excel手动计算员工工龄,不仅耗时费力,还经常因为格式问题或闰年计算出错。刚开始可能觉得学习新工具需要时间,但长远来看,把精力从机械操作转向价值创造,绝对是笔划算的投资。:各部门提交的入职日期格式五花八门,有人用"2023/01/01",有人写"01-Jan-23",手动统一格式就要花20分钟。:遇到闰年2月29日入职的员工,Excel公式经常计算出错,需要单独检查修正。

2026-01-09 14:04:02 285

原创 PYTHON TKINTER零基础入门指南

作为一个完全没有编程基础的小白,刚开始接触GUI编程时真的是一头雾水,但通过一个简单的Tkinter学习应用,我慢慢找到了门道。它最大的特点就是简单易上手,特别适合像我这样的初学者。窗口可以设置标题、大小,还能调整位置,这些都是很基础但很实用的功能。我最常用的是grid,因为它像表格一样排列控件,特别直观。它的在线编辑器可以直接运行Tkinter程序,还能实时看到界面效果,省去了配置环境的麻烦。最棒的是,完成的项目可以一键部署,把作品分享给朋友看。最后我把学到的知识综合起来,做了一个简单的计算器界面。

2026-01-09 13:58:19 188

原创 无需等待:立即开始你的Llama 3微调之旅

快速搭建Llama 3微调环境准备合适的数据集完成基础微调训练验证模型效果建议从一个小型数据集开始,快速验证核心功能。扩充数据集规模尝试不同的微调策略优化推理性能现在就可以拉取镜像开始你的Llama 3微调之旅了!遇到任何问题,欢迎在评论区交流讨论。

2026-01-09 13:56:46 189

原创 企业级项目中Logback冲突的实际解决方案

在多模块项目中,一定要在父pom中统一管理公共依赖的版本。引入新依赖时,要特别注意它可能带来的传递性依赖,特别是日志框架这种基础组件。定期使用dependency:tree检查项目依赖关系,可以预防很多潜在的冲突问题。对于Spring Boot项目,可以利用其自动配置特性,但也要了解背后的原理,这样才能在出现问题时快速定位。建议在项目初期就制定好日志规范,包括日志框架选择、格式要求等,避免后期调整带来的额外成本。在实际解决这个问题的过程中,我发现使用InsCode(快马)平台。

2026-01-09 13:56:25 640

原创 AI助力FreeRTOS开发:自动生成嵌入式系统代码

作为刚接触RTOS的新手,我原本以为要花很多时间学习各种API和配置,没想到用AI辅助开发可以这么高效。最方便的是可以一键部署到开发板实测,省去了传统开发中繁琐的环境配置环节。整个开发过程让我深刻体会到,AI不是要替代开发者,而是成为效率加速器。特别是对于RTOS这种需要关注大量细节的领域,AI能快速搭建可靠的基础框架,让我们更专注于业务逻辑开发。对于嵌入式开发者来说,这种"需求输入-代码生成-快速验证"的闭环体验,让开发效率提升了不止一个量级。输入需求后,AI很快生成了完整的STM32工程框架。

2026-01-09 13:52:42 606

原创 小白也能懂:用Llama Factory预配置镜像玩转大模型微调

作为一名刚接触AI的编程爱好者,你是否也像小美一样,对大模型微调充满好奇却苦于复杂的依赖安装和环境配置?本文将带你使用Llama Factory预配置镜像,轻松实现开箱即用的大模型微调体验。这类任务通常需要GPU环境,目前CSDN算力平台提供了包含该镜像的预置环境,可快速部署验证。

2026-01-09 13:52:26 293

原创 解放生产力:用云端Llama Factory批量微调实验

通过云端Llama Factory环境,我们成功解决了本地机器无法承受多实验并行的问题。快速部署标准化实验环境灵活配置批量实验参数实时监控多实验进度统一管理实验结果探索不同参数高效微调方法的组合测试更大规模模型的微调效果将微调模型部署为API服务现在就可以拉取镜像,开始你的第一个批量微调实验了!记得从小规模测试开始,逐步扩大实验范围。

2026-01-09 13:49:25 296

原创 LUCKSHEET vs 传统Excel:效率提升300%的秘诀

在我的测试中,同样的数据清洗任务,LUCKSHEET耗时仅需Excel的1/3。LUCKSHEET的协作功能则像在线文档一样流畅,所有成员可以实时看到彼此的修改,还能通过聊天框直接讨论。我们团队用LUCKSHEET完成一个预算表,原本需要反复发邮件确认的流程,现在半小时就能搞定,效率提升至少200%。测试显示,同样的自动化任务,LUCKSHEET比VBA脚本节省60%的时间。实际使用中,最让我惊喜的是部署流程——不需要配置服务器,点击按钮就能把项目发布成可访问的链接,团队成员立刻能用。

2026-01-09 13:48:27 364

原创 5个MySQL REGEXP在企业中的实际应用案例

上都实践过,它的在线MySQL环境特别适合快速验证正则表达式,不用搭建本地数据库就能测试各种匹配规则。特别是处理日志和地址解析这种复杂字符串时,可以实时看到匹配结果,比在本地反复修改SQL方便多了。对于需要持续运行的服务,还能一键部署成API供其他系统调用,真的很省心。作为数据库开发中经常被低估的功能,REGEXP其实能解决很多实际业务问题,而且语法比常规字符串函数灵活得多。这个正则确保了:3位字母品类码+4位数字型号+3位颜色码+2位尺寸码。这个简单正则就能实现基础过滤,更复杂的可以用预定义的敏感词库。

2026-01-09 13:46:38 382

原创 快速验证:用NCMDUMP构建音乐下载原型

最惊喜的是部署功能,当我完成开发后,直接点击部署按钮就能生成可公开访问的演示链接,不用自己折腾服务器配置。通过这个项目,我深刻体会到快速原型开发的关键在于:明确核心价值点,对非关键功能做最大简化,同时保持架构的可扩展性。比如支付系统开始时只做模拟验证,用户系统不纠结于完善的安全机制,先把核心的音乐获取流程跑通更重要。为了在3天内完成原型,我选择了技术栈组合:Flask作为后端框架(比Django更轻量),Vue.js 3构建前端界面,SQLite作为临时数据库。第3天:集成支付接口,进行联调测试。

2026-01-09 13:42:26 306

原创 AI助力FTP管理:XFTP官网的智能替代方案

相比传统XFTP工具,这个AI版本节省了约40%的操作时间,安全事件发现速度提升3倍。最惊喜的是语音控制功能,像"把上周的会议记录发到市场部文件夹"这样的指令,系统能准确理解并执行。系统会记录用户三个月内的传输记录,通过分析发现我每周五下午都会把设计稿传到客户review目录,现在到时间就会自动弹出传输提示。传统XFTP工具虽然稳定,但缺乏智能化功能,每次传输文件都要手动操作,效率不高。上开发特别顺畅,内置的Node.js环境开箱即用,AI辅助编程功能帮我快速解决了几个算法问题。

2026-01-09 13:36:02 342

原创 小白必看:智能看图软件卸载完全指南

特别适合这类小工具开发,不用配环境就能直接写代码,内置的Electron模板省去了大量基础工作。最惊喜的是部署功能,点个按钮就能生成可执行文件,连打包签名的步骤都自动化了。对于我这样的新手来说,从开发到能用上成品,整个过程比想象中顺畅太多。作为一个刚接触电脑不久的新手,最头疼的就是遇到软件卸载不干净的问题。最近想卸载电脑上的智能看图软件,结果发现常规卸载后总有残留文件,注册表里也留了一堆垃圾。经过一番摸索,我总结了一套完整的解决方案,还发现用。错误处理包含20多种常见场景判断。最后回收站清空重启电脑。

2026-01-09 13:26:30 129

原创 用WICLEANUP快速验证代码优化方案:原型开发指南

最让我惊喜的是,每种方案都附带了详细的性能预测数据。比如在我的斐波那契案例中,记忆化方案预计能减少80%的执行时间,而矩阵快速幂方案则能带来99%的性能提升。这种快速原型验证的方式,让我们可以在投入大量开发资源前,就能对各种优化策略的有效性有清晰的认识。我特别喜欢它的一键部署功能,优化后的代码可以直接部署测试,省去了搭建环境的麻烦。我同时测试了记忆化和迭代两种方案,工具会自动运行多次测试,给出统计显著性分析,帮助做出数据驱动的决策。我测试了矩阵快速幂方案的代码,性能确实如预测的那样有了显著提升。

2026-01-09 13:18:26 393

原创 5个实际场景下的ps -ef | grep高级用法

平台还内置了常见的开发环境,想练习其他Linux命令也很方便。作为Linux系统管理的瑞士军刀,它几乎每天都会出现在我的终端里。我遇到过这样的情况:某次排查发现用户tomcat的进程异常增多,用这个方法快速定位到了被入侵的恶意进程。上周检查数据库服务时就派上用场了,清爽的列表让我一眼就发现了异常的工作进程。这个命令在自动化脚本里特别有用,我常用它来监控关键服务的进程数量是否正常。最近排查内存泄漏时,这个命令帮我快速锁定了占用资源最多的Java进程。在查看进程时,root用户的进程经常会干扰视线。

2026-01-09 13:18:00 164

原创 企业级JDK1.8部署实战:从安装到生产环境配置

Maven配置要注意settings.xml中的JDK版本指定,建议用toolchains特性实现多版本支持。来管理这类环境配置脚本,它的在线编辑和版本控制功能让团队协作特别顺畅,一键部署能力也省去了很多手动配置的麻烦。实际使用中发现,即使是复杂的多环境配置,也能快速同步到整个开发组。最近我在团队内部梳理开发环境配置时,总结了一套可复用的部署方案,分享给大家如何快速搭建稳定安全的企业级Java环境。这套方案在我们团队实施后,新成员环境搭建时间从半天缩短到10分钟,版本切换问题减少了80%。

2026-01-09 13:11:25 125

原创 Llama Framework揭秘:低代码实现专业级AI模型的秘密

作为一名业务专家,你是否曾想过将自己的领域知识融入AI模型,却苦于编程门槛太高?LLaMA Framework正是为解决这一痛点而生的低代码大模型微调框架。本文将带你快速上手这个工具,无需复杂代码即可将专业经验转化为AI能力。这类任务通常需要GPU环境,目前CSDN算力平台提供了包含该镜像的预置环境,可快速部署验证。

2026-01-09 13:05:25 311

原创 AI智能生成:HTML颜色代码表一键生成工具

使用平台内置的Kimi-K2模型,只需要输入颜色描述词,AI就能自动匹配最接近的标准色值。比如输入"深邃的夜空蓝",模型会返回类似#191970这样的HEX代码,并同步转换成RGB(25,25,112)和HSL(240°, 63%, 27%)格式。通过AI的自然语言理解能力,可以直接用"薄荷绿"、"日落橙"这样的描述词生成准确的颜色值。测试时意外发现,AI对中文颜色词的理解很精准。平台的AI辅助确实大幅提升了效率,特别是颜色算法转换这种容易出错的部分,现在交给模型处理既准确又快速。

2026-01-09 13:02:23 315

原创 AI如何帮你掌握CompletableFuture:自动生成多线程代码示例

AI生成的代码会自动包含线程池配置建议,避免直接使用默认的ForkJoinPool可能导致的性能问题。AI生成的示例会清楚地标注两者的区别:前者用于同步转换结果,后者用于异步嵌套任务。今天在写一个需要处理多线程任务的后端服务时,遇到了一个典型场景:需要同时调用多个外部API,然后合并结果。以前要花半天研究的并发模式,现在用AI辅助十分钟就能得到可用的代码框架,而且关键节点都有详细注释。部署成微服务后,还能用平台提供的监控查看线程池的运行状态,这对调优帮助很大。实际测试时发现,AI生成的单元测试特别实用。

2026-01-09 13:01:20 201

原创 快速验证:1分钟搭建临时NTP测试环境

这个NTP测试沙盒包含三个核心模块:服务端使用chrony提供时间同步服务,客户端通过ntpdate获取时间,中间用Docker Compose编排容器网络。有次需要测试跨地域同步,在平台编辑器里简单调整docker-compose的时区参数,两分钟就构建出东京-法兰克福的测试场景。有次发现诡异的时间漂移现象,把链接丢到群里后,其他工程师马上就能在自己的浏览器里复现问题,省去了传配置文件的麻烦。不用配环境、不用搭服务,点几下就能获得完整可用的测试沙盒,连运维同事都来问我要项目链接。

2026-01-09 12:58:37 396

原创 对比Postman:APIFOX如何提升API开发效率300%

上的实验,我最大的体会是:现代API工具正在从"好用"向"会思考"进化。为了客观对比APIFOX和Postman的效率差异,我设计了一个包含四个核心环节的测试项目:首先用两种工具分别创建相同的10个RESTful API接口,记录每个环节耗时;用相同的测试脚本(包含20个用例)运行时,APIFOX的批量测试功能可以并行执行用例,而Postman需要顺序执行。在测试中,当我在接口描述栏用自然语言写下业务逻辑时,系统自动将其转换成了标准的Markdown文档结构,并同步生成了参数说明表格。

2026-01-09 12:41:20 244

原创 3分钟极速安装QT5.14.2:告别繁琐配置

作为一名经常需要搭建开发环境的程序员,安装各种工具和框架的繁琐过程一直让我头疼。最近在做一个跨平台GUI项目时,需要安装QT5.14.2,发现传统安装方式实在太耗时了。经过一番摸索,我总结出了一套极速安装方案,把原本需要30分钟的安装过程缩短到了3分钟。传统QT安装需要下载庞大的离线安装包,手动选择组件,等待漫长的解压和安装过程。我实际使用后发现,它的部署功能特别方便,一键就能完成项目部署,省去了很多繁琐的配置步骤。这个项目让我深刻体会到,通过合理的工具设计和优化,可以大幅提升开发效率。

2026-01-09 12:40:08 587

原创 AI如何实现飞鸭转存自动化?

完成的,最惊喜的是它的一键部署功能。平台内置的AI辅助编码也很智能,遇到OpenCV的API问题时,通过对话就能快速获得解决方案。传统方式可能需要写大量条件判断代码,而借助OpenCV和Pandas这些AI库,用几十行代码就实现了核心功能。:建立分类规则库,比如图片按年份/月份归档,文档按类型(PDF/Word/Excel)存放,视频根据分辨率分组。:采用多线程处理文件队列,大文件自动分块读取,避免内存溢出。这对后期维护特别重要。:用进度条显示处理状态,错误文件会高亮标记并生成详细日志,方便后续排查问题。

2026-01-09 12:35:31 439

原创 本文用最简单的方式讲解蚁群算法原理,并提供一个可运行的Python示例,帮助编程新手快速理解这一智能算法。

当蚂蚁寻找食物时,会在路径上释放信息素,其他蚂蚁会根据信息素浓度选择路径,最终形成最优路线。作为一个刚接触智能算法的小白,我发现用Python理解蚁群算法其实没有想象中那么难,下面就用最直白的方式带大家快速掌握核心原理。这个算法最妙的地方在于,虽然单个蚂蚁的行为很简单,但群体却能表现出惊人的智能。首先需要准备城市坐标数据。我们可以随机生成10个城市的二维坐标,计算每两个城市之间的距离作为路径长度。信息素浓度越高、距离越短的路径被选择的概率越大。路径越短的蚂蚁释放的信息素越多,同时信息素也会随时间挥发。

2026-01-09 12:30:52 356

原创 索引下推vs传统索引:性能提升10倍的秘密

传统索引查询就是最常规的方式:先通过索引定位数据,然后把所有匹配索引条件的记录都取出来,最后在内存中过滤其他条件。而索引下推则是把过滤条件"下推"到存储引擎层,在索引扫描阶段就直接过滤掉不符合条件的记录。我选择了从1万条到1000万条共6个量级,这样可以观察到随着数据量增长,两种查询方式的性能变化。通过这次实践,我深刻体会到索引下推技术的价值。上完成的,它的在线编辑器可以直接运行数据库性能测试,还能一键部署成可交互的演示页面。而索引下推的IO次数基本保持稳定,因为它在存储引擎层就过滤掉了大量不需要的数据。

2026-01-09 12:30:05 503

原创 1小时快速验证:用GitLab搭建最小可行CI/CD系统

最近在帮一个创业团队搭建开发流程,他们需要快速验证产品原型,但对CI/CD系统要求很简单:能跑通构建和测试就行。整个配置过程比我预想的简单很多,特别是用Docker统一环境后,团队成员再也不用纠结"在我机器上是好的"这种问题。对于初创团队来说,这种够用就好的CI/CD方案既能保证基本质量,又不会拖慢开发节奏。上测试这个方案特别方便,它的在线编辑器可以直接修改CI配置,实时看到运行效果。最棒的是可以一键部署测试环境,省去了本地搭建GitLab的麻烦。对于快速验证想法的场景,这种轻量级方案真的很实用。

2026-01-09 12:24:35 355

原创 图解MODBUS:TCP和RTU的5个关键区别

TCP协议就像快递送货上门,数据包自带完整的地址标签(IP和端口),直接通过网络送到目标设备。最后还加了个FAQ机器人,输入"TCP和RTU哪个快"这类问题,它会用对话方式解释:TCP通常更快因为走网络,但RTU在短距离布线时更稳定。作为一个刚接触工业通信协议的新手,我发现理解MODBUS TCP和RTU的区别确实需要一些直观的辅助,于是决定自己动手做个交互式学习模块。的一键部署功能,写完代码点个按钮就能生成可分享的网页链接,同事们在手机上打开就能直接操作模拟器,不用配任何环境。

2026-01-09 12:23:02 649

原创 Llama Factory小技巧:如何复用微调环境节省云服务费用

作为一名自由职业者,我经常需要为不同客户进行大语言模型的微调任务。每次创建新环境不仅耗时,还会产生额外的云服务费用。经过多次实践,我发现利用 Llama Factory 的环境复用功能可以显著提升工作效率和成本效益。本文将分享如何像使用 Docker 一样保存和复用配置好的微调环境。

2026-01-09 12:22:25 410

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除