DS 0925(第四章 关于串的算法)

本文介绍了串的模式匹配问题,包括朴素模式匹配算法及其时间复杂度分析,接着详细阐述了KMP算法的工作原理,强调了KMP算法不回溯的特点,并通过例子解释了next数组的构建和作用。最后提到了KMP算法的平均时间复杂度以及nextval数组的优化。
摘要由CSDN通过智能技术生成

串的朴素模式匹配算法

模式匹配

主串:S=‘abcdefg’

子串:‘abc’ , ‘efg’ //子串一定是主串中存在的

模式串:‘cde’ ,‘ifg’ //模式串是想要在主串中找到的,未必存在

串的模式匹配: 在主串中找到与模式串相同的子串,并返回其所在的位置

int Index(SString S,SString T){
   
	int k=1;				//使用变量k来表示当前取出子串的起始位置 
	int i=k,j=1;			//使用i和j来分别指向两个串的对应位置 
	while(i<=S.length&&j<=T.length){
   
		if(S.ch[i]==T.ch[j]){
   
			++i;
			++j;     		//继续比较后继字符 
		} else{
   
			k++;  			//检查下一个子串
			i=k;
			j=1; 
		}
	}
	if(j>T.length)
	
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值