堆排序

算法描述

是指利用堆这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

  在堆的数据结构中,堆中的最大值总是位于根节点(在优先队列中使用堆的话堆中的最小值位于根节点)。
堆中定义以下几种操作:
	最大堆调整:将堆的末端子节点作调整,使得子节点永远小于父节点
	创建最大堆:将堆中的所有数据重新排序
	堆排序:移除位在第一个数据的根节点,并做最大堆调整的递归运算

图解
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

参考代码

public class HeapSort {
    public static void main(String[] args) {
//        int[] arr = {49, 38, 65, 97, 76, 13};
        int[] arr = new int[20];
        Random random = new Random();
        for (int i = 0; i < arr.length; i++) {
            arr[i] = random.nextInt(50);
        }
        heapSort(arr);
        System.out.println(Arrays.toString(arr));
    }

    //升序排序
    public static int len;

    private static void heapSort(int[] arr) {
        len = arr.length;
    //   1.将传入的数组堆化
        heapify(arr);
    //   2.将最大值与最后一个元素交换 交换完成在堆化
        for (int i = arr.length - 1; i > 0; i--) {
            exchange(arr, 0, i);
            len--;
            heapify(arr);
        }
    }

    //    堆化
    private static void heapify(int[] arr) {
        for (int i = len - 1; i >= 0; i--) {
            siftDown(arr, i);
        }
    }

    //    下沉操作
    private static void siftDown(int[] arr, int i) {
    //      造成最大堆
        while (leftChild(i) < len) {
            int bigChild = leftChild(i);
            if ( bigChild+ 1 < len && arr[bigChild] < arr[bigChild + 1]) {//左右孩子进行比较
                bigChild = rightChild(i);
            }
            if (arr[bigChild] > arr[i]) {//左右孩子进行比较结果中大的,再与其父节点进行比较
                exchange(arr, bigChild, i);
                i = bigChild; //重新更新父节点角标(下沉就要下沉到底)
            } else {
                break;
            }
        }
    }
    
//    数组存储二叉树   left child(i)=2*i+1 right child(i)=2*i+2    parent(i)=(i-1)/2
    private static int parent(int i) {
        return (i - 1) / 2;
    }

    private static int leftChild(int i) {
        return i * 2 + 1;
    }

    private static int rightChild(int i) {
        return i * 2 + 2;
    }

    private static void exchange(int[] arr, int i, int j) {
        int tmp = arr[i];
        arr[i] = arr[j];
        arr[j] = tmp;
    }
}

算法性能

  • 时间复杂度

    O(nlogn)

  • 空间复杂度

    O(1)

  • 算法稳定性

    不稳定

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值