网络流(一)

本文介绍了网络流的基本概念,包括流网络的定义,源点和汇点的角色,以及可行性流的两个限制——容量限制和流量守恒。还讨论了残留网络、增广路径和割的概念,其中关键定理指出无增广路径时流为最大流,同时强调了割的容量和流量的关系。
摘要由CSDN通过智能技术生成

本贴主要写的是网络流的基本概念,供复习时使用

1.流网络(G=(V,E))

定义有一个图存在两个点:源点和汇点。这两个点可以理解为流网络的起点和终点

且两点之间最多有一条边(即不考虑反向边),每一条边都有边权,我们称其为容量(c(u,v))

现在想象一下,有一些水从源点出发,经过若干条管道(边)流向汇点,管道的容积即为管道的容量

对于一个可行流,它的流量即为从源点流出的水量-流入源点的水量

而我们熟知的最大流即最大可行流,是一个流网络中

2.可行流(f)

我们称满足如下两个限制的一种流的方案即成为可行流

(我们称每一条边的流量为f(u,v))

限制1:容量限制

根据上文所说,每一条边都有容量,则不难发现,每一条边所流的水必须不超过容量

f(u,v)≤c(u,v)

限制2:流量守恒

流量守恒实际上就是说一个点所流入的水与流出的水相同

3.残留网络

残留网络实际上是在原来的流网络上加上每一条边的反向边,并把非反向边的容量变成还可增加的水量,把反向边变成还可退回的水量

这里贴一个图方便理解

这里有一个定理:对于任意一个在残留网络中的可行流′f′和在流网络中的可行流f,∣f+f′∣一定为流网络中的一个可行流

这里不给证明了,背过即可

4.增广路径

即在一个残留网络中从源点开始,每一次沿着边权大于0的边走,直到走到汇点为止,则该条路径称为一条增广路径

这里还有一个定理:当f的残留网络中没有增广路经,则f为最大流

5.割

割这一部分有两个定义

1.割的容量

首先我们把整个流网络分成互不包含的两个部分S,T,使S包含源点,T包含汇点

从S集合连到T集合连的边数即为割的容量

2.割的流量

即从S流向T的边的流量之和减去从T流向S的边的流量之和

对于任意一个割,割的流量一定小于割的容量

ps:我们所说的最小割为所有割的容量的最小值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值