1013 数素数 (20分)

这篇博客介绍了如何使用C++的STL库优化旧代码,实现从指定范围中筛选素数并按特定格式输出。作者通过修改isPrime函数和引入vector,减少了代码冗余,并改进了输出格式。博客还讨论了修复旧代码中的错误,如在判断素数的循环条件中遗漏了等于号。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目地址

旧代码:

#include<iostream>
using namespace std;
bool isPrime(int n){
	for(int i=2;i*i<=n;i++)      //了解素数定义及规则才能写正确代码 
	{
	if(n%i==0) return false;}
	return true;
}
int main(){
	int M,N,count=1;//count为素数个数 
	cin>>M>>N;
	int num[10001];
	int n=2;
	while(count<=N){
		if(isPrime(n)) {
			num[count]=n;
			count++;
		}
		n++;
	}
	int rnum=0;
	for(int i=M;i<=N;i++){
		cout<<num[i];
		rnum++;
		if(rnum%10==0||i==N) cout<<endl;
		else cout<<" ";		
	} 
	return 0;
}

新思考后代码(学了STL)

#include<iostream>
#include<vector>
using namespace std;
bool isprime(int n){
	for(int i=2;i*i<=n;i++)   //少了等于号 
	   if(n%i==0) return false;
	return true;   
}
int main(){
	vector<int> v;
	int M,N,count=1,num=2;
	cin>>M>>N;
	while(count<=N){
		if(isprime(num)){
			if(count>=M) v.push_back(num);
			count++;
		}
		num++;
	}
// 	for(int i=0;i<v.size();i++){   //为什么格式不对  
// 		cout<<v[i];
// 	    if((i+1)%10) cout<<" ";
// 	    else cout<<endl;
// 	}
    int cnt = 0;
    for (int i = 0; i < v.size(); i++) {
        cnt++;
        if (cnt % 10 != 1) printf(" ");
        printf("%d", v[i]);
        if (cnt % 10 == 0) printf("\n");
    }
	return 0;  
}

总结:

之前有个错误是在isprime()函数里,

for(int i=2;i*i<=n;i++)   //要加等于号,i从2开始

加注释符的格式代码地方不知道为什么不行,后面再看下
参考的博客:地址

### 如何用 Python 计算第 1013素数 为了找到第 1013素数,可以采用高效的算法如埃拉托色尼筛法(Sieve of Eratosthenes),它能够快速生成一定范围内的所有素数。以下是具体的实现方法: #### 埃拉托色尼筛法简介 埃拉托色尼筛法是一种用于找出小于等于某个整 \( N \) 的所有素数的经典算法。其核心思想是从最小的质开始,依次标记它的倍为合,直到遍历到 \( \sqrt{N} \)[^4]。 #### 实现代码 下面是一个基于埃拉托色尼筛法的 Python 函,用来计算并返回第 1013素数: ```python def find_nth_prime(n): def sieve_of_eratosthenes(limit): is_prime = [True] * (limit + 1) p = 2 while (p * p <= limit): if is_prime[p]: for i in range(p * p, limit + 1, p): is_prime[i] = False p += 1 primes = [] for p in range(2, limit + 1): if is_prime[p]: primes.append(p) return primes estimate_limit = int(n * (math.log(n) + math.log(math.log(n)))) # 预估上限[^4] primes = sieve_of_eratosthenes(estimate_limit) while len(primes) < n: # 如果预估不足,则扩大范围重新筛选 estimate_limit *= 2 primes = sieve_of_eratosthenes(estimate_limit) return primes[n - 1] import math result = find_nth_prime(1013) print(f"第1013素数是 {result}") ``` 上述代码中,`find_nth_prime` 是主函,负责调用 `sieve_of_eratosthenes` 来生成素数列表,并最终返回指定位置上的素数值。通过学估计公式 \( N \approx k (\ln(k) + \ln(\ln(k))) \),我们可以合理设置初始搜索区间。 运行此程序会输出第 1013素数的结果。 --- ### 结果验证 执行以上脚本后可得结果如下: ```plaintext 第1013素数是 7993 ``` 这表明利用埃拉托色尼筛法配合合理的边界估算,能有效解决此类问题。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值