[文献学习]Information extraction of bionic camera-based polarization navigation patterns under noisy

摘要:

光偏振是描述光波的振荡和取向的现象。偏振光是许多海洋和陆地动物导航的重要线索来源。通过观察许多昆虫小眼的现象,本研究探讨了在各种条件下获取有关极化信息的挑战。噪声条件可能是由于雾霾或大气中云层的存在。在这种大气条件下,气溶胶分子的体积和规模都更大。当阳光穿过这些气溶胶分子时,其偏振信息会发生扭曲,扭曲的图形对光偏振的中性点只有很少或没有信息。本文基于波长与偏振的关系,提出了一种新的基于色相的混色模型,以提高偏振信息和方向信息的计算精度和鲁棒性。该方法提高了偏振图的对称性,消除了噪声的影响。与红、绿、蓝(RGB)光谱进行了偏振模式的对称性比较,并对这些差异进行了量化和比较,特别是在高噪声天气条件下。

一、实验系统

 主要实验仪器:线偏振片、鱼眼镜头、尼康单反相机

(其中,相机的灵敏度曲线的最大带宽和半带宽范围分别是其光谱灵敏度曲线的最大值和半带宽分别为红色(620 ± 50)nm、绿色(530 ± 30)nm和蓝色(470 ± 30)nm。)

二、偏振度和偏振角的计算方法

 

分别对红色、绿色、蓝色光谱对应的AOP以及DOP进行了测量;

结论:如果光的波长越大,它遇到的粒子数量就越少,因此散射就越少。光的DOP与波长成反比关系,在较短的太阳光波长下(如紫色或靛蓝),我们可以得到较大的DOP,因此有了足够的DOP,我们就可以方便有效地探测到重要的导航信息。

三、创新点

色相成分变化色相是图像的重要组成部分。它定义了图像的颜色信息。色相分量的变化导致图像颜色信息的变化。色彩理论认为,除了原色RGB,所有其他的二次色都是这些原色混合的结果。由于红色、绿色和蓝色都有自己特定的波长,这三种颜色的组合会产生新的颜色信息,因此产生的颜色也会有新的波长。

该论文方法的基本部分是步骤是图像从RGB转换为色调、饱和度和值(HSV)表示。使用HSV可以让调整图像的颜色,因为可以在按比例改变饱和度和值时调整色调,而这并不影响图像的颜色。由于这种颜色的调整,产生图像的光的波长被有效地改变了。利用这种能力和波长较小的光(即蓝色或紫色光)对偏振信息产生更好的结果,通过改变图像的颜色,降低波长,以提高偏振信息的提取。

 1、TH是在阳光条件下获得的最大DOP。

2、RANSAC算法

3、当操作波长在蓝色范围内时,DOP较大。紫和靛蓝视觉光谱范围内的光散射大于蓝色光谱范围,因为紫和靛蓝光谱是红色和蓝色的组合。选择η因子的必要条件是,我们可以尽可能地最小化波长,并可以得到混合的颜色信息。为了从蓝色到靛蓝或紫色的转换信息,我们选择了η=80◦,以获得更对称、更准确的AOP图案。

四、对称性分析 

分别对使用红绿蓝光谱以及HBCM(hue based color mixing)方法的天空分布模式AOP图像进行了对称性分析,验证了HBCM方法的有效性。

五、讨论

1、可以考虑复现这篇论文的方法,当然这篇论文的所有研究是基于彩色图像的。

2、在此基础上,可以考虑进行一些优化,比如加低通的滤波片。

3、学习RANSAC算法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值