1.判断素数
时间复杂度 O(sqrt(n))
空间复杂度 O(1)
#include<iostream>
#include<cmath> //sqrt函数头文件
using namespace std;
bool prime(int n)
{
if(n<2) //小于2的都不是素数
return false;
for(int i=2;i<sqrt(n);i++)
if(n%i==0) //如果含有被整除的因子,则不是素数
return false;
return true;
}
int main()
{
int n;
while(cin>>n)
{
if(prime(n)) //判断素数
cout<<"Yes"<<endl;
else
cout<<"No"<<endl;
}
return 0;
}
2.求1--1000000内的所有素数
(1)普通筛选法--埃拉托斯特尼筛法
基本思想:素数的倍数一定不是素数
实现方法:用一个长度为N+1的数组保存信息(0表示素数,1表示非素数),先假设所有的数都是素数(初始化为0),从第一个素数2开始,把2的倍数都标记为非素数(置为1),一直到大于N;然后进行下一趟,找到2后面的下一个素数3,进行同样的处理,直到最后,数组中依然为0的数即为素数。
说明:整数1特殊处理即可。
时间复杂度 O(nloglogn)
空间复杂度 O(n)
#include<cstdio>
int temp[1000001]; //全局变量默认初始化为0
int main()
{
for(int i=2;i<1000001;i++)
if(!temp[i]) //如果值为零说明为素数
{
for(int j=i*i;j<1000001;j+=i)
temp[j]=1; //此数所有的倍数均不为素数
printf("%d\n",i);
}
return 0;
}
不足之处:很多数被处理了不止1遍,比如6,在素数为2的时候处理1次,为3时候又标记一次,因此又造成了比较大的不必要处理.
(2)线性筛法
原理:
每个合数必有一个最小素因子。每个合数仅被它的最小素因子筛去正好一次。所以为线性时间。那么合数有两种:1.素数*素数=合数 2.一个最小的素数*合数=合数
筛除:
如果遇到i为素数,那么一个大的素数 i 乘以不大于 i 的素数,这样筛除的数跟之前的是不会重复的
如果遇到i为合数,我们只认为合数由一个最小的素数*合数得到,也不会重复(就像12=2*6而不是12=3*4)
时间复杂度:O(n)
空间复杂度:O(2n)
#include<iostream>
#include<cstdio>
using namespace std;
const int N=1000001;
int prime[N],vis[N],cnt=0; //prime储存素数,vis储存是否筛选过
int main()
{
for(int i=2;i<N;i++)
{
if(!vis[i])
prime[cnt++]=i; //将素数存下来
for(int j=0;j<cnt&&i*prime[j]<N;j++) //筛选
{
vis[i*prime[j]]=1;
if(!i%prime[j]) //避免重复筛选
break;
}
}
for(int i=0;i<cnt;i++) //输出
printf("%d\n",prime[i]);
return 0;
}
if(i%prime[j]==0)break;
prime数组 中的素数是递增的,当 i 能整除 prime[j],那么 i*prime[j+1] 这个合数肯定被 prime[j] 乘以某个数筛掉。
因为i中含有prime[j], prime[j] 比 prime[j+1] 小。接下去的素数同理。所以不用筛下去了。
在满足i%prme[j]==0这个条件之前以及第一次满足改条件时,pr[j]必定是pr[j]*i的最小因子。