【系统架构】亿级Web 系统的容错性实践【下】

服务降级,自动屏蔽非核心分支异常

对于一次礼包领取请求,在我们的后端CGI会经过10多个环节和服务的逻辑判断,包括礼包配置读取、礼包限量检查、登陆态校验、安全保护等等。而这些服务中,就有不可以跳过的核心环节,例如读取礼包配置的服务,也有非核心环节,例如数据上报对于非核心环节,我们的做法,就是设置一个比较低的超时时间

例如我们其中一个统计上报服务,平均耗时是3ms,那么我们就将超时时间设置为20ms,一旦超时则旁路掉,继续按照正常逻辑走业务流程。


服务解耦、物理隔离

虽然,大家都知道一个服务的设计,要尽可能小和分离部署,如此,服务之间的耦合会比较小,一旦某个模块出问题,受到影响的模块就比较少,容错能力就会更强。可是,从设计之初,就将每一个服务有序的切割地很小,这个需要设计者具备超前的意识,能够提前意识到业务和系统的发展形态,而实际上,业务的发展往往是比较难以预知的,因为业务的形态会随着产品的策略的改变而变化。在业务早期流量比较小的时候,通常也没有足够的人力和资源,将服务细细的切分。AMS从日请求百万级的Web系统,逐渐成长为亿级,在这个过程中,流量规模增长了100倍,我们经历了不少服务耦合带来的阵痛。

服务分离、大服务变成多个小服务

我们常常说,鸡蛋不能都放在一个篮子里。AMS以前是一个比较小的系统(日请求百万级,在腾讯公司内完全是一个不起眼的小Web系统),因此,很多服务和存储在早起都是部署在一起的,查询和发货服务都放在一起,不管哪一个出问题,都相互影响。后来,我们逐渐的将这些核心的服务和存储,慢慢地分离出来,细细切分和重新部署。在数据存储方面,我们将原来3-5个存储的服务,慢慢地切为20多个独立部署的存储。

例如,2016年下半年,我们就将其中一个核心的存储数据,从1个分离为3个。

这样做带来了很多好处:

1:原来主存储的压力分流

2稳定性更高,不再是其中一个出问题,影响整个大的模块;

3存储之间是彼此物理隔离的,即使服务器硬件故障,也不会相互影响

轻重分离、物理分离

另外一方面,我们对于一些核心的业务,进行“轻重分离”。例如,我们支持2016年“手Q春节红包”活动项目的服务集群。就将负责信息查询和红包礼包发货的集群分别独立部署,信息查询的服务相对没有那么重要,业务流程比较轻量级,而红包礼包发货则属于非常核心的业务,业务流程比较重。

轻重分离的这个部署方式,可以给我们带来一些好处:

1查询集群即使出问题,也不会影响发货集群,保证用户核心功能正常;

2两边的机器和部署的服务基本一致,在紧急的情况下,两边的集群可以相互支援和切换,起到容灾的效果;

3每个集群里的机器,都是跨机房部署,例如,服务器都是分布在ABC三个机房,假设B机房整个网络故障了,反向代理服务会将无法接受服务的B机房机器剔除,然后,剩下AC机房的服务器仍然可以正常为外界提供服务。

业务层面的容错

如果系统架构设计层面的“容错”我们都搭建完善了,那么再继续下一层容错,就需要根据实际的业务来进行,因为,不同的业务拥有不同的业务逻辑特性,也能够导致业务层面的各种问题。而在业务层面的容错,简而言之,避免“人的失误”。不管一个人做事性格多么谨慎细心,也总有“手抖”的时候,在不经意间产生“失误”。AMS是一个活动运营平台,一个月会上线400多个活动,涉及数以千计的活动配置信息(包括礼包、规则、活动参与逻辑等等)。在我们的业务场景下,因为种种原因而导致“人的失误”并不少。

例如,某个运营同学看错礼包发放的日限量,将原本只允许1天放量100个礼包的资源,错误地配置为每天放量200个。这种错误是测试同学比较难测试出来的,等到活动真正上线,礼包发放到101个的时候,就报错了,因为资源池当天已经没有资源了。虽然,我们的业务告警系统能够快速捕获到这个异常(每10分钟为一个周期,从十多个维度,监控和计算各个活动的成功率、流量波动等等数据),但是,对于腾讯的用户量级来说,即使只影响十多分钟,也可以影响成千上万的用户,对于大规模流量的推广活动,甚至可以影响数十万用户了。这样的话,就很容易就造成严重的“现网事故”。

完善的监控系统能够及时发现问题,防止影响面的进一步扩大和失控,但是,它并不能杜绝现网问题的发生。而真正的根治之法,当然是从起源的地方杜绝这种场景的出现,回到上面“日限量配置错误”的例子场景中,用户在内部管理端发布活动配置时,就直接提示运营同学,这个配置规则是不对的。

在业界,因为配置参数错误而导致的现网重大事故的例子,可以说是多不胜数,“配置参数问题”几乎可以说是一个业界难题,对于解决或者缓解这种错误的发生,并没有放之四海而皆准的方法,更多的是需要根据具体业务和系统场景,亦步亦趋地逐步建设配套的检查机制程序或者脚本。

因此,我们建设了一套强大并且智能的配置检查系统,里面集合了数十种业务的搭配检查规则,并且检查规则的数目一直都在增加。这里规则包括检查礼包日限量之类比较简单的规则,也有检查各种关联配置参数、相对比较复杂的业务逻辑规则。

另外一方面,流程的执行不能通过“口头约定”,也应该固化为平台程序的一部分,例如,活动上线之前,我们要求负责活动的同事需要验证一下“礼包领取逻辑”,也就是真实的去领取一次礼包。然而,这只是一个“口头约定”,实际上并不具备强制执行力,如果这位同事因为活动的礼包过多,而漏过其中一个礼包的验证流程,这种事情也的确偶尔会发生,这个也算是“人的失误”的另外一种场景。


为了解决问题,这个流程在我们AMS的内部管理端中,是通过程序去保证的,确保这位同事的QQ号码的确领取过全部的礼包。做法其实挺简单的,就是让负责活动的同事设置一个验证活动的QQ号码,然后,程序在发货活动时,程序会自动检查每一个子活动项目中,是否有这个QQ号码的活动参与记录。如果都有参与记录,则说明这位同事完整地领取了全部礼包。同时,其他模块的验证和测试,我们也都采用程序和平台来保证,而不是通过“口头约定”。


通过程序和系统对业务逻辑和流程的保证,尽可能防止“人的失误”。

这种业务配置检查程序,除了可以减少问题的发生,实际上也减轻了测试和验证活动的工作,可以起到节省人力的效果。不过,业务配置检查规则的建设并不简单,逻辑往往比较复杂,因为要防止误杀


小结

无论是人还是机器,都是会产生“失误”,只是对于单一个体,发生的概率通常并不大。但是,如果一个系统拥有数百台服务器,或者有一项工作有几百人共同参与,这种“失误“的概率就被大大提升,失误很可能就变为一种常态了。机器的故障,尽可能让系统本身去兼容和恢复,人的失误,尽可能通过程序和系统流程来避免,都尽可能做到”不依赖于人“。

容错的核心价值,除了增强系统的健壮性外,我觉得是解放技术人员,尽可能让我们不用凌晨起来处理告警,或享受一个相对平凡闲暇的周末。对于我们来说,要完全做到这点,还有很长的路要走,与君共勉。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值