c语言 使用函数验证哥德巴赫猜想

本题要求实现一个判断素数的简单函数,并利用该函数验证哥德巴赫猜想:任何一个不小于6的偶数均可表示为两个奇素数之和。素数就是只能被1和自身整除的正整数。注意:1不是素数,2是素数。

函数接口定义:

int prime( int p );
void Goldbach( int n );

其中函数prime当用户传入参数p为素数时返回1,否则返回0;函数Goldbach按照格式“n=p+q”输出n的素数分解,其中p≤q均为素数。又因为这样的分解不唯一(例如24可以分解为5+19,还可以分解为7+17),要求必须输出所有解中p最小的解。

裁判测试程序样例:

#include <stdio.h>
#include <math.h>

int prime( int p );
void Goldbach( int n );

int main()
{
    int m, n, i, cnt;

    scanf("%d %d", &m, &n);
    if ( prime(m) != 0 ) printf("%d is a prime number\n", m);
    if ( m < 6 ) m = 6;
    if ( m%2 ) m++;
    cnt = 0;
    for( i=m; i<=n; i+=2 ) {
        Goldbach(i);
        cnt++;
        if ( cnt%5 ) printf(", ");
        else printf("\n");
    }

    return 0;
}

/* 你的代码将被嵌在这里 */

我的答案:

int prime( int p )
{
    for(int i=2;i<=p;i++)
    {
        if(p%i==0)
        {
            if(p==i) return 1;
            else return 0;
        }
    }
}
void Goldbach( int n )
{
    for(int i=2;i<=n;i++)
    {
        if(prime(i)==1 && prime(n-i)==1)//这里巧妙地解决n=p+q还要pq均为素数的问题,值得学习
        {
            printf("%d=%d+%d",n,i,n-i);
            break;//记得打破循环,题目要求只输出最小的p的情况
        }
    }
}

完整代码:

#include <stdio.h>
#include <math.h>

int prime( int p );
void Goldbach( int n );

int main()
{
    int m, n, i, cnt;

    scanf("%d %d", &m, &n);
    if ( prime(m) != 0 ) printf("%d is a prime number\n", m);
    if ( m < 6 ) m = 6;
    if ( m%2 ) m++;
    cnt = 0;
    for( i=m; i<=n; i+=2 ) {
        Goldbach(i);
        cnt++;
        if ( cnt%5 ) printf(", ");
        else printf("\n");
    }

    return 0;
}
int prime( int p )
{
    for(int i=2;i<=p;i++)
    {
        if(p%i==0)
        {
            if(p==i) return 1;
            else return 0;
        }
    }
}
void Goldbach( int n )
{
    for(int i=2;i<=n;i++)
    {
        if(prime(i)==1&&prime(n-i)==1)
        {
            printf("%d=%d+%d",n,i,n-i);
            break;
        }
    }
}
哥德巴赫猜想是指任何一个大于2的偶数都可以写成两个质数之和。下面是一个验证哥德巴赫猜想的 C 语言函数: ``` #include <stdio.h> #include <stdbool.h> bool isPrime(int n) { if (n <= 1) { return false; } for (int i = 2; i * i <= n; i++) { if (n % i == 0) { return false; } } return true; } void verifyGoldbachConjecture(int n) { if (n % 2 != 0 || n <= 2) { printf("%d不是一个大于2的偶数。\n", n); return; } bool found = false; for (int i = 2; i <= n / 2; i++) { if (isPrime(i) && isPrime(n - i)) { printf("%d = %d + %d\n", n, i, n - i); found = true; } } if (!found) { printf("无法将%d表示为两个质数之和。\n", n); } } int main() { verifyGoldbachConjecture(6); // 可以表示为 3+3 verifyGoldbachConjecture(10); // 可以表示为 3+7 或 5+5 verifyGoldbachConjecture(12); // 可以表示为 5+7 verifyGoldbachConjecture(20); // 可以表示为 3+17 或 7+13 verifyGoldbachConjecture(24); // 可以表示为 5+19 或 7+17 或 11+13 verifyGoldbachConjecture(27); // 不是一个偶数 verifyGoldbachConjecture(1); // 不是一个大于2的偶数 verifyGoldbachConjecture(-4); // 不是一个大于2的偶数 return 0; } ``` 该函数首先判断输入的数是否是一个大于2的偶数。如果不是,则输出相应的错误信息并返回。如果是,则遍历小于等于n/2的所有正整数,判断它们是否是质数。如果找到两个质数使它们的和等于n,则输出这两个质数,否则输出无法将n表示为两个质数之和的信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值