线性筛

今天在看了各种以及听了各种之后终于算是了解线性筛了…
虽然都是一些很基本的应用但还是觉得各种强大…

线性筛素数

代码

int tot_prime, prime[maxn];
bool vist[maxn];
void get_prime(){

    for(int i = 2; i <= n; ++i){
        if(!vist[i]) prime[++tot_prime] = i;
        for(int j = 1; i * prime[j] <= n && j <= tot_prime; ++j){
            vist[i*prime[j]] = true;
            if(i % prime[j] == 0) break;
        }
    }
}

  

一些解释

第一次看到的时候就有一句话觉得很鬼畜…

if(i % prime[j] == 0) break;

果然这段代码最鬼畜的就是这句,今天在翻其他东西的时候偶然发现了这个:

这行代码神奇地保证了每个合数只会被它的最小素因子筛掉,就把复杂度降到了 O(N)
接下来是证明这个算法正确性的说明:

prime[] 数组中的素数是递增的,当 i 能整除prime[j],那么 iprime[j+1] 这个合数肯定被 prime[j] 乘以某个数筛掉。
因为 i 中含有prime[j] prime[j] prime[j+1] 小,即 i=kprime[j] ,那么 iprime[j+1]=(kprime[j])prime[j+1]=kprime[j] ,接下去的素数同理。所以不用筛下去了。因此,在满足 i 这个条件之前以及第一次满足改条件时, prime[j] 必定是 prime[j]i 的最小因子

  
  

求欧拉函数

相关公式

x=Πpaii
φ(x)=x1 <xprime>
φ(x)=xΠ(11pi)=Π(pipai1i)
除此只外,欧拉函数还是积性函数,即 φ(xy)=φ(x)φ(y) <gcd(x,y)=1>

  

代码

利用线性筛可以在线性时间内求得phi[i]

int tot_prime, prime[maxn], phi[maxn];
bool vist[maxn];
void get_prime(){

    phi[1] = 1;
    for(int i = 2; i <= n; ++i){
        if(!vist[i]) prime[++tot_prime] = i, phi[i] = i - 1;
        for(int j = 1; i * prime[j] <= n && j <= tot_prime; ++j){
            vist[i*prime[j]] = true;
            if(i % prime[j] == 0){
                phi[i*prime[j]] = phi[i] * prime[j];
                break;
            }
            else phi[i*prime[j]] = phi[i] * prime[j];
    }
}

  

what’s more

但有时并不需要求 1...x 的所有欧拉函数值,很多时候我们要求的都是一个比较大的数字 x(x[1,109]) 的欧拉函数值
虽然不需要筛法求欧拉函数了,但根据公式,还是需要筛素数
以下是筛素数之后的代码

int phi(int x){

    int rtn = 1, cpy_x = x;
    for(int i = 1; prime[i] * prime[i] <= cpy_x && i <= tot_prime; ++i){

        int temp = 1;
        while(x % prime[i] == 0){
            x /= prime[i];
            temp *= prime[i];
        }
        if(temp > 1) rtn *= temp - temp / prime[i];
    }
    if(x > 1) rtn *= (x - 1); // 还剩下一个很大的质数

    return rtn;
}

  
  

求约数的个数

相关公式

f(x) x 的约数的个数,还是把x表示成 x=Πpaii 的形式
f(x)=Π(ai+1)
f(x)=2 <xprime>
发现 f(x) 也是积性函数,即 f(xy)=f(x)f(y) <gcd(x,y)=1>

  

代码

为了方便,让 a[i] 表示 x 最小素数因子的个数

int tot_prime, prime[maxn];
int f[maxn], a[maxn];
bool vist[maxn];
void get_f(){

    f[1] = 1;
    for(int i = 2; i <= n; ++i){

        if(!vist[i]) prime[++tot_prime] = i, f[i] = 2, a[i] = 1;
        for(int j = 1; i * prime[j] <= n && j <= tot_prime; ++j){
            vist[i*prime[j]] = true;
            if(i % prime[j] == 0){
                f[i*prime[j]] = f[i] / (a[i] + 1) * (a[i] + 2);
                a[i*prime[j]] = a[i] + 1;
                break;
            }
            else f[i*prime[j]] = f[i] * f[prime[j]], a[i*prime[j]] = 1;
        }
    }
}

  

一些解释

if(i % prime[j] == 0){
    f[i*prime[j]] = f[i] / (a[i] + 1) * (a[i] + 2);
    a[i*prime[j]] = a[i] + 1;
    break;
}

prime[j] i 的约数时,iprime[j]就相当于 i 多了一个最小素因子,根据之前的公式,所以转移如上。

else f[i*prime[j]] = f[i] * f[prime[j]], a[i*prime[j]] = 1;

i prime[j] 互质时,由积性知f[]转移如上。
对于a[]的转移,我是这样理解的:
我们先假设 iprime[j] 的最小素因子个数为1。
如果 iprime[j] 的最小素因子是由 i 提供的话,我们马上就会枚举到它的最小素因子,然后把a[iprime[j]]修改为正确的值。
否则 iprime[j] 的最小素因子就是 prime[j] 且不被 i 包含。这是因为首先i mod prime[j]!=0;其次,假设 iprime[j] 的最小素因子在 i 中,那么肯定早就break了,我们就不可能枚举到prime[j]

  
  

求莫比乌斯函数

相关公式

μ(x)=1 <x=1>
μ(x)=1k<x=Πki=1pi,pi1>
μ(x)=0<>
莫比乌斯函数同样是积性函数,即 μ(xy)=μ(x)μ(y) <gcd(x,y)=1>

  

代码

mu[1] = 1;
for(int i = 2; i <= n; ++i){
    if(!vist[i]) prime[++tot_prime] = i, mu[i] = -1;
    for(int j = 1; i * prime[j] <= n && j <= tot_prime; ++j)
        vist[i*prime[j]] = true;
        if(i % prime[j] == 0){
            mu[i*prime[j]] = 0;
            break;
        }
        else mu[i*prime[j]] = mu[i] * mu[prime[j]];
}

参考与其他

线性筛(欧拉筛)
【数论内容】线性筛素数,线性筛欧拉函数,求前N个数的约数个数
莫比乌斯反演ppt by PoPoQQQ
xiaohao1大神的讲解与莫比乌斯反演pdf

欧拉函数
积性函数、线性筛、莫比乌斯反演和一堆乱七八糟的题目

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值