协同协同进化(CC)为大规模全局优化(LSGO)提供了一种强大的分而治之的体系结构。然而,它的性能在很大程度上依赖于退役状态。为了进行接近最优的分解,大多数开发的分解策略要么无法获得正确的相关性信息,要么在识别中需要大量的适应度评估(FE)。为了缓解先前工作中的局限性,该文提出了一种用于LSGO中CC的快速相关性识别(FII)算法。
该算法首先有效地识别了可分离变量和不可分离变量。然后,进一步研究了不可分离变量的相关性信息。
为了对CC进行接近最优的分解,我们的算法避免了获得不可分离变量的完全相关性信息的必要性。因此,可以节省大量的适应性评估。已经对两套LSGO基准函数进行了广泛的实验,这些函数具有多达20 0 0个变量。与三种最先进的算法相比,FII用更少的FE正确地识别了大多数基准函数的相互依赖性信息。此外,与CC相结合,再加上作为优化器的差分进化变体,FII在LSGO中表现出了良好的性能。
理论定义变量相互依赖的信息:
因此,通过(perturbation method、也称摄动法)研究变量的差值,就可以得到问题的变量相互依赖信息:
第一个流程:
分离不可变量:
最后的算法流程伪代码
这个分解方法可以作为大多数进化算法的基石了...
代码复现再说....