论文阅读-Fast interdependency identification for large scale optimization(FLL)-大规模变量优化问题

文章提出了一种名为FII的算法,用于大规模全局优化问题中的协同进化CC的快速相关性识别。FII能有效区分可分离和不可分离变量,减少适应度评估,从而提高分解效率。实验表明,FII在识别变量依赖性和优化性能上优于其他先进算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

协同协同进化(CC)为大规模全局优化(LSGO)提供了一种强大的分而治之的体系结构。然而,它的性能在很大程度上依赖于退役状态。为了进行接近最优的分解,大多数开发的分解策略要么无法获得正确的相关性信息,要么在识别中需要大量的适应度评估(FE)。为了缓解先前工作中的局限性,该文提出了一种用于LSGO中CC的快速相关性识别(FII)算法。

该算法首先有效地识别了可分离变量和不可分离变量。然后,进一步研究了不可分离变量的相关性信息。

为了对CC进行接近最优的分解,我们的算法避免了获得不可分离变量的完全相关性信息的必要性。因此,可以节省大量的适应性评估。已经对两套LSGO基准函数进行了广泛的实验,这些函数具有多达20 0 0个变量。与三种最先进的算法相比,FII用更少的FE正确地识别了大多数基准函数的相互依赖性信息。此外,与CC相结合,再加上作为优化器的差分进化变体,FII在LSGO中表现出了良好的性能。

理论定义变量相互依赖的信息:

因此,通过(perturbation method、也称摄动法)研究变量的差值,就可以得到问题的变量相互依赖信息:

 第一个流程:

分离不可变量:

最后的算法流程伪代码

这个分解方法可以作为大多数进化算法的基石了...

代码复现再说....

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值