OpenCV
文章平均质量分 81
Insist2015
这个作者很懒,什么都没留下…
展开
-
OpenCV中特征点提取和匹配的通用方法
OpenCV在新版本中把很多C语言的代码都重新整理成了C++代码,让我们在使用的时候更加方便灵活。其中对于特征点的提取和匹配,充分体现了C++的强大。下面直接用例子来说明。假设我们有两幅图:1.bmp和2.bmp,要从中提取体征点并匹配,代码如下: // Load image from fileIplImage *pLeftImage = cvLoadImage("1.bmp", CV转载 2013-03-09 10:50:47 · 1101 阅读 · 0 评论 -
opencv源码解析之(一):高斯滤波GaussianBlur()
这一节来真正进入opencv的源码分析中,本次分析的函数是GaussianBlur(),即高斯滤波函数。在前前面博文《opencv源码解析之滤波前言2》: 其函数声明为: void GaussianBlur(InputArray src, OutputArray dst, Size ksize, double sigmaX, double sigmaY=0, int bor转载 2013-03-09 10:53:34 · 2051 阅读 · 0 评论 -
OpenCv轮廓高级应用(轮廓匹配,几何直方图)
虽然Canny之类的边缘检测算法可以根据像素间的差异检测出轮廓边界的像素,但是它并没有将轮廓作为一个整体。下一步是要将这些边缘像素组装成轮廓。轮廓是构成任何一个形状的边界或外形线。直方图对比和模板匹配根据色彩及色彩的分布来进行匹配,以下包括:轮廓的查找、表达方式、组织方式、绘制、特性、匹配。首先回忆下几个结构体:首先是图像本身的结构体:typedef struct CvMat{转载 2013-03-09 10:44:42 · 4187 阅读 · 0 评论