自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(18)
  • 问答 (1)
  • 收藏
  • 关注

转载 计算机视觉相关资源

转自http://www.cnblogs.com/objectDetect/p/5607146.html1.  多伦多大学计算机科学系2.  普林斯顿大学计算机视觉和机器人实验室3.  牛津大学Torr Vision Group4.  伯克利视觉和学习中心Prof. Trevor DarrellCS280 Computer VisionObject Detection and Segmentati...

2018-03-05 10:37:54 317

转载 FaceNet论文笔记

转自 http://blog.csdn.net/stdcoutzyx/article/details/46687471FaceNet与其他的深度学习方法在人脸上的应用不同,FaceNet并没有用传统的softmax的方式去进行分类学习,然后抽取其中某一层作为特征,而是直接进行端对端学习一个从图像到欧式空间的编码方法,然后基于这个编码再做人脸识别、人脸验证和人脸聚类等。FaceNet

2017-07-31 17:10:35 1453

转载 Bag-of-words模型

转自http://blog.csdn.net/wsj998689aa/article/details/47089153Bag-of-words模型简介Bag-of-words模型是信息检索领域常用的文档表示方法。在信息检索中,BOW模型假定对于一个文档,忽略它的单词顺序和语法、句法等要素,将其仅仅看作是若干个词汇的集合,文档中每个单词的出现都是独立的,不依赖于其它单

2017-07-29 10:31:32 331

转载 LSTM

转自:http://www.jianshu.com/p/9dc9f41f0b29原文LSTM:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.3117

2017-07-25 16:23:24 289

原创 highway network总结

提高网络结果准确度:更深的层数以及更小的感受野(Szegedy et al.,2014;Simonyan & Zisserman,2014))Highway Networks针对解决深层网络训练困难的问题由LSTM启发,采用门技术网络原映射函数:增加T(transform)门和C(carry)门,控制信息的流动:根据C+T=1:最终经过调参,训练

2017-07-25 15:00:01 2222

转载 原型聚类(K-means聚类、LVQ、高斯混合聚类)

转自:周志华《机器学习》第9章转自:http://blog.csdn.net/sunanger_wang/article/details/8852746 1、K-means有样本D(x1,x2,...,xn),先随机找K个点作为类别中心,(1)计算每个样本距K个点的距离,将样本分类到距离最近的点,(2)根据每类的样本更新类别中心2、LVQ,学习向量量化前提:假设

2017-04-07 17:36:33 4832

转载 BP算法的梯度激增,梯度消失

转自知乎:https://www.zhihu.com/question/49812013/answer/148825073转自博客:http://blog.csdn.net/lu597203933/article/details/46575803自我总结:链式法则传递误差时,对乘法项:0.9*0.9*...*0.9多了就成了0(梯度消失)  ,  1.1*1.1*...*1.1

2017-04-05 21:40:23 1277

转载 极大似然估计和EM算法

转自:http://blog.csdn.net/zouxy09/article/details/8537620感谢博主:zouxy09一、最大似然         假设我们需要调查我们学校的男生和女生的身高分布。你怎么做啊?你说那么多人不可能一个一个去问吧,肯定是抽样了。假设你在校园里随便地活捉了100个男生和100个女生。他们共200个人(也就是200个身高的样本

2017-03-24 16:53:10 6002

原创 周志华《机器学习》 ID3实现雏形(未完善,未运行)

最近阅读机器学习的决策树,突发奇想写了一下ID3实现,未完待续,保存下来等有时间接着写,大体框架是这样目前还未写样例运行,未实例化实现指导如下:#include #include #include using namespace std;int main(){ AA attr; DD sample; decisionTree *m=new decisi

2017-03-21 22:04:34 353

转载 SVM(四)支撑向量机,二次规划问题

转自:http://blog.csdn.net/wangkr111/article/details/21170739

2017-03-21 16:04:18 1839

转载 SVM(三)核函数

转自: 周志华老师的《机器学习》 P128页

2017-03-21 15:53:43 547

转载 SVM(二)拉格朗日对偶问题

转自:http://blog.csdn.net/wangkr111/article/details/21170809

2017-03-21 15:44:45 380

转载 SVM(一)问题提出

转自:http://blog.csdn.net/wangkr111/article/details/21170881svm主要分有4个问题       1.问题的提出       2.拉格朗日对偶问题。       3.核函数问题。       4.二次规划问题。自我理解:(1)SVM问题也是逻辑回归问题           

2017-03-21 15:12:34 466

转载 线性回归、逻辑回归区别

转自http://blog.csdn.net/viewcode/article/details/8794401回归问题的条件/前提:1) 收集的数据2) 假设的模型,即一个函数,这个函数里含有未知的参数,通过学习,可以估计出参数。然后利用这个模型去预测/分类新的数据。1. 线性回归假设 特征 和 结果 都满足线性。即不大于一次方。这个是针对 收集

2017-03-15 10:36:33 649

转载 多物体检测 RCNN

基于R-CNN的物体检测原文地址:http://blog.csdn.net/hjimce/article/details/50187029作者:hjimce一、相关理论   本篇博文主要讲解2014年CVPR上的经典paper:《Rich feature hierarchies for Accurate Object Detection and Segmentation》,这篇

2017-01-16 18:25:15 1977

转载 奇异值分解(SVD)

出处:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html感谢作者PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是基于特征值分解的一种解释。特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中。而且线性代数或者矩阵论里面,也

2017-01-12 18:08:38 302

转载 范数和距离

1、范数转自 http://blog.csdn.net/kingzone_2008/article/details/15073987向量的范数可以简单形象的理解为向量的长度,或者向量到零点的距离,或者相应的两个点之间的距离。向量的范数定义:向量的范数是一个函数||x||,满足非负性||x|| >= 0,齐次性||cx|| = |c| ||x|| ,三角不等式||x+y||

2017-01-06 09:54:31 4660

转载 batch normalization

白化(sphering)参考http://ufldl.stanford.edu/wiki/index.php/%E7%99%BD%E5%8C%96举例来说,假设训练数据是图像,由于图像中相邻像素之间具有很强的相关性,所以用于训练时输入是冗余的。白化的目的就是降低输入的冗余性;更正式的说,我们希望通过白化过程使得学习算法的输入具有如下性质:(i)特征之间相关性较低;(ii)所有特征具有相

2016-12-26 18:20:02 5540

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除