关于坯布的面料克重问题

⑴、 坯布克重:是指织物单位面积的重量,一般以每平方米的克数表示 (g/m2)。商业上最简单计算方法。
  
  例如:棉织物一般在70~250 g/m2范围内;
     凡立丁 (精梳)毛织物重量在185 g/m2 左右;
     厚花呢 (粗梳)为280g/m2左右;
     薄形丝织物一般在20~100 g/m2之间。
    坯布克重也是考核织物物理性能的品德指标之一,这对毛织物来说更为注重。在精梳毛织物、毛型化纤织物的《部颁》标准中规定:平方米重偏轻不能超过允许公差(规定为5%),定为一等品;超过5%而不超过7%,为二等品。
⑵、按《部颁标准》计算方法(应扣除回潮率因素):
  
   式中:GK --公定回潮率下的平方米重量(g/m2)
      GO --试样干重 (g)
      WK --试样的公定回潮率 (%)
      L --试样长度 (cm)
      B --试样宽度 (cm)
  常用纱线的定回潮率 (WK) 摘录如下:
      棉纱: 8.5%
      精梳毛纱: 16%
      粗梳毛纱: 15%
      涤/棉纱(65/35): 3.2%
 ⑶、根据织物结构因素的近似估算平方米重量的计算方法:
  
  式中: NtT --经纱特克斯数(号数)
     NTw --纬纱特克斯数(号数)
     PT --经纱密度 (根/10cm)
     PW --纬纱密度(根/10cm)
    这计算公式是近似值,它没有考虑纱线的弯曲、伸长和织物在加工过程中的重量变化。
(注:特克斯数(号数)是指:用1000米长的纱线在公定回潮率时的重量 (g)表示。)
(4)一平方米棉布无浆干燥重量:




式中:G——一平方米棉布无浆干燥重量(克);
      Gj——一平方米棉布的经纱干燥重量(克);
      Gw——一平方米棉布的纬纱干燥重量(克);
      Pj——棉布的经纱密度(根/10厘米);
      Pw——棉布的纬纱密度(根/10厘米);
      gj——经纱纺出标准干燥重量(克/100米);
      gw——纬纱纺出标准干燥重量(克/100米);
      Fj——经纱总飞花率;
      aj——经纱缩率;
      Sjz——经纱总伸长率;
      aw——纬纱缩率。
其中:
1、经、纬纱纺出标准干燥重量(克/100)
                   =公制号数* 0.92166 /10
               或者=53.74 /英制支数
2、股线重量按并合后的重量计算。
3、经纱总伸长率:上浆单纱按1.2%计算(其中络筒、整经以0.5%计算,浆纱以0.7%计算)。
    上水股线10 2号以下按0.3%计算,10 2号以上按0.7%计算。
4、间接纬纱的伸长率较小,可略去不计。
5、经纱总飞花率:粗号(支)织物按1.2%计;中号(支)平纹织物按0.6%计,斜纹织物按0.9%计;细号(支)织物按0.8%计;线织物按0.6%计。
6、经纱总伸长率、经纱总飞花率以及经纬纱织缩率是计算一平方米织物重量的依据,不是规定指标。

但是以上公式都是站在技术人员的角度,真正做销售的,哪有时间在面对客户的时候,还要那么麻烦的用计算机一项项来算呢.???所以营销人员最好采用以下公式,(以上了解即可)

1.最简单的:(核价、车间领纱估算用)
百米用经纱=经密/支数*门幅*0.0065
百米用纬纱=纬密/支数*门幅*0.0065
比较合理的:(工艺员用)
百米用经纱=(经纱号数*总经根数/(1-经缩率))/10000*1.01
百米用纬纱=纬纱号数*纬密*3.937*(筘幅+回丝)/100000*1.003
回丝——弹力纱取12cm,普纱取8cm
2.百米用纱量(KG/百米)=(经密+纬密)X1.1X0.059X幅宽/纱支
坯布平方米克重=(精密+纬密)*1.1*59/(2.54*纱子)
              =精密*1.1*59/(2.54*纱支)   +   纬密*1.1*59/(2.54*纱支)
                    经向                               纬向
a.经(纬)密/2.54--------将英制密度换算为公制密度
b.系数1.1-------是综合考虑经(纬)缩率、经(纬)纱损耗大概为10%,虽有偏差,但作为便捷快速计算,并无大碍
c.59/纱支-------是将英制纱支换算为公制特数,是综合了棉583.1,涤纶590.5等换算系数,取590的系数,虽有误差,也无大碍
d.牵扯到的具体单位进制换算我就不一一列举了
    综上:  经向 a * b * c   +   纬向 a * b * c
          =精密+纬密)*1.1*59/(2.54*纱子)=坯布平方米克重

e.g.面料成本核算资料

每米用纱量=(经密+纬密)X0.065X成品门幅X1.01
举例:45s T/C*45sT/C 110*70 58/59" 涤棉米通 (纱价按:26000元/吨)
百米用纱量=(110+70)/45X0.065X59X1.01=15.5KG/百米 每米用纱量为155G/M。纱染色费算8000元/吨,则每米报价为: 15.5X(2.6+0.8)= 5.27元/米,另加公缴3元/米,后道处理1.00元/米,另加利润 0.5元/米,则报出价为10.00元/米。
3.对于短纤类计算平方米克重可以用以下的公式:
               经向克重=(英制经密/英制纱支)*23.25
               纬向克重=(英制纬密/英制纱支)*23.25
      对于长丝类计算平方米克重可以用以下的公式:
               经向克重=(经向旦数*英制经密)/228.6
               纬向克重=(纬向旦数*英制纬密)/228.6

坯布的克重与成品克重换算
坯布的克重与成品克重换算,如以公式计算,与实际可能有很大偏差,主要原因分两方面,胚布设定可用公式计算,祇要条件愈接近,结果愈准碓,因织造为物理性改变,由胚布加工为成品布,经过染整多个工序,织物经过物理性及化学性改变,变量增大,期间涉及各种不同类型之机械,工序等等,形成各企业有着不同之规格标准,因此坯布的克重与成品克重换算,每个企业均有其标准。

  如何建立企业换算公式?

  建议将企业以往的胚布至成品布之结果收集,再用计算机筛选最多之结果作为标准,再按企业生产情况,评估其实用性,再订下换算公式。

  实例参考:(一般布类,一般织染整工艺)

  胚重 == 订单成品重 x 胚重系数

  布 类 胚重系数

  平 纹 92%

  双 珠 88%

  双 位 衣 89%

  单 珠 93%

  单 位 衣 89%

  拉架平纹 100%

  毛 巾 106%

  双 面 88%

  拉架罗纹 91%

  罗 纹 83%

  拉架灯蕊 92%

  灯 蕊 87%

### 使用OpenCV实现坯布缺陷检测 在工业视觉应用中,使用OpenCV库可以有效地进行图像处理和分析工作。对于坯布缺陷检测的任务来说,主要目标是从复杂的背景中区分出异常区域。 #### 图像预处理 为了提高后续算法的效果,在输入原始图像之后通常会先执行一些基本操作来增强对比度、去除噪声等: ```python import cv2 import numpy as np def preprocess_image(image_path): img = cv2.imread(image_path, 0) # 读取灰度图 blurred = cv2.GaussianBlur(img,(5,5),0) # 高斯模糊去噪 _, thresh = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) # 自适应二值化 kernel = np.ones((3,3),np.uint8) opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel, iterations = 2) # 形态学开运算减少噪音 sure_bg = cv2.dilate(opening,kernel,iterations=3) # 膨胀得到确定背景区域 dist_transform = cv2.distanceTransform(opening,cv2.DIST_L2,5) _, sure_fg = cv2.threshold(dist_transform,0.7*dist_transform.max(),255,0) sure_fg = np.uint8(sure_fg) unknown = cv2.subtract(sure_bg,sure_fg) return (sure_fg, unknown) ``` 这段代码实现了对输入图像的基本预处理过程,包括高斯滤波降噪、自适应二值化以及形态学变换以分离前景与背景[^1]。 #### 缺陷定位 通过连通域标记方法找到可能存在的缺陷位置,并利用轮廓提取技术获取这些区域的具体形状信息: ```python def find_defects(preprocessed_img_tuple): sure_fg, _ = preprocessed_img_tuple contours, hierarchy = cv2.findContours(sure_fg.copy(),cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)[-2:] defects_info = [] for cnt in contours: area = cv2.contourArea(cnt) if area < 50: continue # 过滤掉面积过小的对象 rect = cv2.boundingRect(cnt) box = [(rect[0], rect[1]), (rect[0]+rect[2], rect[1]+rect[3])] defect_data = { 'area': area, 'bounding_box': box, 'contour': cnt.tolist() } defects_info.append(defect_data) return defects_info ``` 此部分代码用于查找经过预处理后的图像中的潜在缺陷对象,并记录它们的位置和其他属性信息。 #### 结果可视化 最后一步是对检测到的结果进行可视化展示,以便于观察和验证: ```python def visualize_results(original_image_path, defects_list): original_img = cv2.imread(original_image_path) for item in defects_list: top_left, bottom_right = item['bounding_box'] color = (0, 0, 255) # Red color in BGR format thickness = 2 start_point = tuple(map(int,top_left)) end_point = tuple(map(int,bottom_right)) annotated_img = cv2.rectangle(original_img, start_point ,end_point,color,thickness) return annotated_img ``` 上述函数接收原图路径及由`find_defects()`返回的数据结构作为参数,绘制矩形框标注出所有被识别出来的缺陷部位。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值