看看AI对图片内容的总结(是否有点被吓到):这张图描述了一个基于机器学习模型(LLM)的聊天机器人的工作流程,LLM的Chatbot查询私有知识库流程
1、Private Knowledge Base:这是一个内部的知识库,储存了与机器人回答问题所需的各种信息。
2、Documentation Private Chat Interface:这是机器人的用户界面,用户通过它提交问题(Query)。
3、提交问题后,这个问题被输入到一个Embedding Model,这是一种将文本转换为数值向量的模型,使得机器可以理解和处理。
4、这个模型产生了一个Embedded Query,即问题的向量表示。同时,机器人会使用一些Stored Vectors,也就是预先储存的向量,这些向量可能表示了知识库中的某些文本块(Text Chunk)。
5、接着,机器人将这些嵌入的查询与储存的向量进行对比,这可能会涉及到一些Retrieved Vectors,或者说是查询过程中找到的相关向量。
6、然后,机器人使用这些向量来Answer the Query,即回答问题。
7、在回答问题的过程中,机器人可能使用Indexing和Approximate Nearest Neighbour search (ANN)技术来从大规模的向量数据库中快速找到与查询最接近的向量。这个过程发生在一个被称为Embedding (Latent) Space的向量空间中。
8、最后,机器人Only use Context to construct the answer,这意味着机器人只使用查询的上下文信息来构造回答,而不依赖其他额外的信息。