基于LLM的聊天机器人Chatbot的流程

该文描述了一个基于机器学习的聊天机器人如何运作,通过PrivateKnowledgeBase接收问题,使用EmbeddingModel转化问题为向量形式,通过比对和检索找出相关知识,利用ApproximateNearestNeighbour技术在向量空间中寻找答案,并仅依赖查询上下文构建回答。
摘要由CSDN通过智能技术生成

看看AI对图片内容的总结(是否有点被吓到):这张图描述了一个基于机器学习模型(LLM)的聊天机器人的工作流程,LLM的Chatbot查询私有知识库流程

1、Private Knowledge Base:这是一个内部的知识库,储存了与机器人回答问题所需的各种信息。

2、Documentation Private Chat Interface:这是机器人的用户界面,用户通过它提交问题(Query)。

3、提交问题后,这个问题被输入到一个Embedding Model,这是一种将文本转换为数值向量的模型,使得机器可以理解和处理。

4、这个模型产生了一个Embedded Query,即问题的向量表示。同时,机器人会使用一些Stored Vectors,也就是预先储存的向量,这些向量可能表示了知识库中的某些文本块(Text Chunk)。

5、接着,机器人将这些嵌入的查询与储存的向量进行对比,这可能会涉及到一些Retrieved Vectors,或者说是查询过程中找到的相关向量。

6、然后,机器人使用这些向量来Answer the Query,即回答问题。

7、在回答问题的过程中,机器人可能使用Indexing和Approximate Nearest Neighbour search (ANN)技术来从大规模的向量数据库中快速找到与查询最接近的向量。这个过程发生在一个被称为Embedding (Latent) Space的向量空间中。

8、最后,机器人Only use Context to construct the answer,这意味着机器人只使用查询的上下文信息来构造回答,而不依赖其他额外的信息。

在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值