读书笔记
文章平均质量分 93
爱破破爱科研
这个作者很懒,什么都没留下…
展开
-
盲去卷模糊核估计(最优化)
前言 之前写过一篇维纳滤波在图像复原中的作用,讲述了图像退化模型以及维纳滤波的作用。维纳滤波使用的前提是知道信号和噪声的功率谱,但在实际应用中较难得到,只能根据先验知识进行估计拍照过程中相机抖动、离焦、散焦或目标物体移动等,带来图像模糊。盲去卷积盲去模糊可以概括为:“模型的提出(最优化式的提出)”和“算法求解”两个方面。盲去模糊的处理模型:转载 2017-10-27 12:26:09 · 13929 阅读 · 1 评论 -
逻辑回归(根据Andrew Ng 课程整理)
1、总述逻辑回归是应用非常广泛的一个分类机器学习算法,它将数据拟合到一个logit函数(或者叫做logistic函数)中,从而能够完成对事件发生的概率进行预测。 2、由来 要说逻辑回归,我们得追溯到线性回归,想必大家对线性回归都有一定的了解,即对于多维空间中存在的样本点,我们用特征的线性组合去拟合空间中点的分布和轨迹。如下图所示: 线性回归能对连续值...原创 2017-10-26 22:28:52 · 754 阅读 · 0 评论 -
基于深度学习的图像压缩
近年来,深度学习在计算机视觉领域已经占据主导地位,不论是在图像识别还是超分辨重现上,深度学习已成为图片研究的重要技术,但它们的能力并不仅限于这些任务;现在深度学习技术已进入图片压缩领域。下面就说说神经网络在图像压缩领域的应用。当前主要图片压缩算法说到图像压缩算法,目前市面上影响力比较大的图片压缩技术是WebP和BPGWebP:谷歌在2010年推出的一款可以同时提供有损压缩和无损压缩的图...原创 2018-12-30 13:40:06 · 15174 阅读 · 2 评论 -
TensorRT API开发手册
第一章 综述1.1 TensorRTLayers1.2 关键概念1.3 TensorRT API’s1.3.1 Python Samples1.3.2 Python Workflows第一章 综述NVIDIA的TensorRT是一个基于GPU高性能前向运算的C++库。TensorRT导入网络定义,通过合并tensors与layers,权值转换,选择高效中间数据类型,基于...原创 2019-01-01 16:20:46 · 9204 阅读 · 3 评论 -
深度学习领域最新的技术(CV、NLP)
人工智能正在日益渗透到所有的技术领域。而深度学习(DL)是目前最活跃的分支。最近几年,DL取得了许多重要进展。其中一些因为事件跟大众关系密切而引人瞩目,而有的虽然低调但意义重大。深度学习从业人员应该保持足够的嗅觉,这个领域正在发生很多事情,你必须要跑的足够的快才能跟上时代步伐。一. 计算机视觉(CV)这是现在深度学习中最受欢迎的领域,我觉得我们已经完全获取了计算机视觉中容易实现的目标...原创 2019-02-27 23:50:36 · 27105 阅读 · 1 评论