conv2D中的NHWC与NCHW理解

卷积神经网络(CNN)的核心是卷积操作,卷积函数conv2d用于处理数据。数据格式参数data_format通常为'NHWC'或'NCHW',分别表示批次、高度、宽度和通道。'NHWC'是默认格式,而'NCHW'则将通道放在前面。理解这两种格式的区别有助于优化模型性能,尤其是在数据预处理时。项目实践中,根据数据结构选择合适的数据格式至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

卷积是CNN里的算法核心,各种高级的NN算法,可以简单的看成是卷积,池化,全连接的有序的组合。 

其中卷积函数conv2d是我们常用的卷积计算函数,其中的data_format的理解,最开始学习的时候,总是忽略了,直到有次具体的项目,才仔细研究了这个参数

data_format的参数 'NHWC'  和 ‘NCHW’, 在api的介绍里,只是囫囵吞找的记住了, NHWC,数据格式,尺寸大小的描述信息在2,3维度, NCHW,在3,4维。默认是NHWC;

基本上的调用都是默认参数NHWC。   其实对应很简单, N-batch number, H height size, W width size; C channel number  

意义何在呢,其实就是就是看你数据准备时,你准备的数据结构是怎样的, 通常我们的处理都是NHWC的方式,所以很少用到NCHW的,但是偏偏就有不这么处理的,就有了NCHW的理解了。

 

https://www.ginghan.com/about-1.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

inthirties

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值