《深入浅出数据分析》-6.贝叶斯统计

本文探讨了贝叶斯统计在疾病诊断中的应用,通过实例分析了初次及二次诊断结果对疾病判断的影响,指出书中部分计算错误并讨论了贝叶斯规则在实际案例中的叠加使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

六、贝叶斯统计

医生给了你一份蜥蜴流感诊断书,好消息是蜥蜴流感并不致命,在家治疗几个星期即可痊愈;坏消息是蜥蜴流感极其麻烦,你需要在家隔离六周以上。

上图中情形2计算错误,应该等于8人。

上图中最后一行公式中的阴性改为阳性。

这时候,又进行了一次高级的诊断试验,概率值出现了变化,并且你的测试结果变成了阴性

下图是在1000人都是阳性的情况下进行分类,书中第一次测验的结果是阳性,第二次测验的结果是阴性,感觉有点奇怪,难道这个还能叠加不成。

文中想举一个贝叶斯规则叠加的例子,但这个于实际情况并不是很符合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值