在Spring Boot中集成Spring AI与Milvus实现智能问答系统
引言
随着人工智能技术的快速发展,越来越多的开发者希望将AI能力集成到自己的应用中。本文将介绍如何在Spring Boot项目中集成Spring AI和向量数据库Milvus,构建一个高效的智能问答系统。
技术栈
- 核心框架: Spring Boot 3.x
- AI框架: Spring AI
- 向量数据库: Milvus
- 其他工具: Lombok, MapStruct
环境准备
- 安装Milvus: 首先需要安装并启动Milvus服务,可以参考官方文档进行配置。
- 创建Spring Boot项目: 使用Spring Initializr创建一个新的Spring Boot项目,添加必要的依赖。
集成Spring AI
Spring AI是一个新兴的框架,提供了与多种AI模型集成的能力。以下是集成步骤:
- 添加Spring AI依赖到
pom.xml
:<dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-core</artifactId> <version>1.0.0</version> </dependency>
- 配置AI模型参数,例如OpenAI的API密钥。
集成Milvus
Milvus是一个高性能的向量数据库,非常适合存储和检索AI生成的向量数据。以下是集成步骤:
- 添加Milvus Java SDK依赖:
<dependency> <groupId>io.milvus</groupId> <artifactId>milvus-sdk-java</artifactId> <version>2.0.0</version> </dependency>
- 配置Milvus连接参数,包括主机地址和端口。
实现智能问答系统
- 数据准备: 将问答数据转换为向量并存储到Milvus中。
- 查询处理: 用户输入问题后,将其转换为向量,并在Milvus中检索最相似的答案。
- 结果返回: 将检索到的答案返回给用户。
代码示例
以下是一个简单的代码示例,展示如何将问题转换为向量并查询Milvus:
@Service
public class QuestionService {
@Autowired
private MilvusClient milvusClient;
public String answerQuestion(String question) {
// 将问题转换为向量
float[] vector = convertToVector(question);
// 在Milvus中查询相似向量
SearchParam searchParam = SearchParam.newBuilder()
.withCollectionName("questions")
.withVectorFieldName("vector")
.withVectors(Collections.singletonList(vector))
.build();
SearchResults searchResults = milvusClient.search(searchParam);
// 返回最相似的答案
return searchResults.getResults().get(0).getString("answer");
}
private float[] convertToVector(String text) {
// 使用Spring AI将文本转换为向量
// 省略具体实现
return new float[0];
}
}
总结
本文详细介绍了如何在Spring Boot项目中集成Spring AI和Milvus,实现一个智能问答系统。通过合理的架构设计和代码实现,开发者可以快速将AI能力集成到自己的应用中。