Spring Boot集成Spring AI与Milvus实现智能问答系统

在Spring Boot中集成Spring AI与Milvus实现智能问答系统

引言

随着人工智能技术的快速发展,越来越多的开发者希望将AI能力集成到自己的应用中。本文将介绍如何在Spring Boot项目中集成Spring AI和向量数据库Milvus,构建一个高效的智能问答系统。

技术栈

  • 核心框架: Spring Boot 3.x
  • AI框架: Spring AI
  • 向量数据库: Milvus
  • 其他工具: Lombok, MapStruct

环境准备

  1. 安装Milvus: 首先需要安装并启动Milvus服务,可以参考官方文档进行配置。
  2. 创建Spring Boot项目: 使用Spring Initializr创建一个新的Spring Boot项目,添加必要的依赖。

集成Spring AI

Spring AI是一个新兴的框架,提供了与多种AI模型集成的能力。以下是集成步骤:

  1. 添加Spring AI依赖到pom.xml
    <dependency>
        <groupId>org.springframework.ai</groupId>
        <artifactId>spring-ai-core</artifactId>
        <version>1.0.0</version>
    </dependency>
    
  2. 配置AI模型参数,例如OpenAI的API密钥。

集成Milvus

Milvus是一个高性能的向量数据库,非常适合存储和检索AI生成的向量数据。以下是集成步骤:

  1. 添加Milvus Java SDK依赖:
    <dependency>
        <groupId>io.milvus</groupId>
        <artifactId>milvus-sdk-java</artifactId>
        <version>2.0.0</version>
    </dependency>
    
  2. 配置Milvus连接参数,包括主机地址和端口。

实现智能问答系统

  1. 数据准备: 将问答数据转换为向量并存储到Milvus中。
  2. 查询处理: 用户输入问题后,将其转换为向量,并在Milvus中检索最相似的答案。
  3. 结果返回: 将检索到的答案返回给用户。

代码示例

以下是一个简单的代码示例,展示如何将问题转换为向量并查询Milvus:

@Service
public class QuestionService {
    @Autowired
    private MilvusClient milvusClient;

    public String answerQuestion(String question) {
        // 将问题转换为向量
        float[] vector = convertToVector(question);
        
        // 在Milvus中查询相似向量
        SearchParam searchParam = SearchParam.newBuilder()
                .withCollectionName("questions")
                .withVectorFieldName("vector")
                .withVectors(Collections.singletonList(vector))
                .build();
        SearchResults searchResults = milvusClient.search(searchParam);
        
        // 返回最相似的答案
        return searchResults.getResults().get(0).getString("answer");
    }

    private float[] convertToVector(String text) {
        // 使用Spring AI将文本转换为向量
        // 省略具体实现
        return new float[0];
    }
}

总结

本文详细介绍了如何在Spring Boot项目中集成Spring AI和Milvus,实现一个智能问答系统。通过合理的架构设计和代码实现,开发者可以快速将AI能力集成到自己的应用中。

参考资料

  1. Spring AI官方文档
  2. Milvus官方文档
### spring-ai-milvus-store-spring-boot-starter 的使用说明 `spring-ai-milvus-store-spring-boot-starter` 是一个用于将 Milvus 集成Spring Boot 项目中的依赖。它提供了对 Milvus 向量数据库的支持,便于开发者在应用中实现向量存储和检索功能。以下是关于如何配置和集成该依赖的详细说明。 #### 1. 添加依赖 在项目的 `pom.xml` 文件中添加以下依赖项: ```xml <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-milvus-store-spring-boot-starter</artifactId> </dependency> ``` 此依赖项会自动引入 Milvus 客户端以及其他必要的组件[^1]。 #### 2. 配置文件设置 在 `application.yml` 或 `application.properties` 文件中配置 Milvus 相关参数。以下是一个典型的配置示例: ```yaml spring: application: name: spring-ai-milvus-example ai: vectorstore: milvus: client: host: xxx.xxx.xxx.xxx port: 19530 username: root password: xxxxxx collectionName: vector_store1 initializeSchema: true embeddingDimension: 1024 indexType: IVF_FLAT metricType: COSINE ``` - **host**: Milvus 数据库的主机地址。 - **port**: Milvus 数据库的端口号,默认为 `19530`。 - **username** 和 **password**: 如果启用了认证,则需要提供用户名和密码。 - **collectionName**: 向量存储的集合名称。 - **initializeSchema**: 是否初始化 Milvus 表结构。 - **embeddingDimension**: 嵌入向量的维度。 - **indexType**: 索引类型,例如 `IVF_FLAT`、`HNSW` 等。 - **metricType**: 度量类型,例如 `COSINE` 或 `L2`[^4]。 #### 3. 使用示例 以下是一个简单的代码示例,展示如何在项目中使用 Milvus 存储和检索向量数据。 ```java import org.springframework.beans.factory.annotation.Autowired; import org.springframework.ai.vectorstore.milvus.MilvusVectorStore; import org.springframework.stereotype.Service; @Service public class VectorService { @Autowired private MilvusVectorStore milvusVectorStore; public void storeVector(String id, double[] vector) { milvusVectorStore.add(id, vector); } public double[] searchVector(double[] queryVector, int topK) { return milvusVectorStore.search(queryVector, topK); } } ``` - **storeVector**: 将向量数据存储到 Milvus 中。 - **searchVector**: 根据查询向量检索最相似的向量。 #### 4. 测试验证 完成上述步骤后,可以通过单元测试或集成测试验证 Milvus集成是否成功。可以参考 GitHub 上的示例项目进行进一步学习[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uranus^

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值