Spring Boot集成Spring AI与RAG技术构建智能问答系统

在Spring Boot中集成Spring AI与RAG技术构建智能问答系统

引言

随着人工智能技术的快速发展,智能问答系统在企业中的应用越来越广泛。本文将介绍如何在Spring Boot项目中集成Spring AI,并结合RAG(检索增强生成)技术,构建一个高效的智能问答系统。

技术栈

  • 核心框架: Spring Boot
  • AI技术: Spring AI, RAG
  • 向量数据库: Milvus
  • Embedding模型: OpenAI
  • 其他工具: Lombok, MapStruct

实现步骤

1. 环境准备

首先,确保你的开发环境中已安装以下工具:

  • JDK 11+
  • Maven 3.6+
  • Docker(用于运行Milvus)

2. 创建Spring Boot项目

使用Spring Initializr创建一个新的Spring Boot项目,添加以下依赖:

<dependencies>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.ai</groupId>
        <artifactId>spring-ai-core</artifactId>
        <version>1.0.0</version>
    </dependency>
    <dependency>
        <groupId>org.projectlombok</groupId>
        <artifactId>lombok</artifactId>
        <optional>true</optional>
    </dependency>
</dependencies>

3. 集成Milvus向量数据库

Milvus是一个开源的向量数据库,非常适合用于语义检索。通过Docker快速启动一个Milvus实例:

docker run -d --name milvus -p 19530:19530 milvusdb/milvus:latest

在Spring Boot中,使用Milvus的Java SDK进行连接和操作:

@Configuration
public class MilvusConfig {
    @Value("${milvus.host}")
    private String host;

    @Value("${milvus.port}")
    private int port;

    @Bean
    public MilvusClient milvusClient() {
        return new MilvusClient(host, port);
    }
}

4. 使用OpenAI Embedding模型

OpenAI提供了强大的Embedding模型,可以将文本转换为向量。在Spring Boot中集成OpenAI的API:

@Service
public class EmbeddingService {
    @Value("${openai.api.key}")
    private String apiKey;

    public List<Double> getEmbedding(String text) {
        // 调用OpenAI API获取Embedding
        // 示例代码省略
        return embedding;
    }
}

5. 实现RAG技术

RAG技术通过结合检索和生成模型,能够提供更准确的答案。以下是实现的核心代码:

@Service
public class RAGService {
    @Autowired
    private MilvusClient milvusClient;

    @Autowired
    private EmbeddingService embeddingService;

    public String answerQuestion(String question) {
        // 1. 获取问题的Embedding
        List<Double> questionEmbedding = embeddingService.getEmbedding(question);

        // 2. 在Milvus中检索最相似的文档
        List<String> similarDocs = milvusClient.search(questionEmbedding);

        // 3. 结合检索结果生成答案
        String answer = generateAnswer(similarDocs, question);
        return answer;
    }

    private String generateAnswer(List<String> docs, String question) {
        // 生成答案的逻辑
        // 示例代码省略
        return "生成的答案";
    }
}

6. 构建REST API

最后,提供一个REST接口供前端调用:

@RestController
@RequestMapping("/api/qa")
public class QAController {
    @Autowired
    private RAGService ragService;

    @PostMapping
    public String answerQuestion(@RequestBody String question) {
        return ragService.answerQuestion(question);
    }
}

总结

本文详细介绍了如何在Spring Boot项目中集成Spring AI和RAG技术,构建一个智能问答系统。通过结合Milvus向量数据库和OpenAI Embedding模型,能够高效地实现语义检索和答案生成。希望本文能为你在AI领域的探索提供帮助。

参考资料

  1. Spring AI官方文档
  2. Milvus官方文档
  3. OpenAI API文档
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uranus^

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值