在Spring Boot中集成Spring AI与RAG技术构建智能问答系统
引言
随着人工智能技术的快速发展,智能问答系统在企业中的应用越来越广泛。本文将介绍如何在Spring Boot项目中集成Spring AI,并结合RAG(检索增强生成)技术,构建一个高效的智能问答系统。
技术栈
- 核心框架: Spring Boot
- AI技术: Spring AI, RAG
- 向量数据库: Milvus
- Embedding模型: OpenAI
- 其他工具: Lombok, MapStruct
实现步骤
1. 环境准备
首先,确保你的开发环境中已安装以下工具:
- JDK 11+
- Maven 3.6+
- Docker(用于运行Milvus)
2. 创建Spring Boot项目
使用Spring Initializr创建一个新的Spring Boot项目,添加以下依赖:
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-core</artifactId>
<version>1.0.0</version>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
</dependencies>
3. 集成Milvus向量数据库
Milvus是一个开源的向量数据库,非常适合用于语义检索。通过Docker快速启动一个Milvus实例:
docker run -d --name milvus -p 19530:19530 milvusdb/milvus:latest
在Spring Boot中,使用Milvus的Java SDK进行连接和操作:
@Configuration
public class MilvusConfig {
@Value("${milvus.host}")
private String host;
@Value("${milvus.port}")
private int port;
@Bean
public MilvusClient milvusClient() {
return new MilvusClient(host, port);
}
}
4. 使用OpenAI Embedding模型
OpenAI提供了强大的Embedding模型,可以将文本转换为向量。在Spring Boot中集成OpenAI的API:
@Service
public class EmbeddingService {
@Value("${openai.api.key}")
private String apiKey;
public List<Double> getEmbedding(String text) {
// 调用OpenAI API获取Embedding
// 示例代码省略
return embedding;
}
}
5. 实现RAG技术
RAG技术通过结合检索和生成模型,能够提供更准确的答案。以下是实现的核心代码:
@Service
public class RAGService {
@Autowired
private MilvusClient milvusClient;
@Autowired
private EmbeddingService embeddingService;
public String answerQuestion(String question) {
// 1. 获取问题的Embedding
List<Double> questionEmbedding = embeddingService.getEmbedding(question);
// 2. 在Milvus中检索最相似的文档
List<String> similarDocs = milvusClient.search(questionEmbedding);
// 3. 结合检索结果生成答案
String answer = generateAnswer(similarDocs, question);
return answer;
}
private String generateAnswer(List<String> docs, String question) {
// 生成答案的逻辑
// 示例代码省略
return "生成的答案";
}
}
6. 构建REST API
最后,提供一个REST接口供前端调用:
@RestController
@RequestMapping("/api/qa")
public class QAController {
@Autowired
private RAGService ragService;
@PostMapping
public String answerQuestion(@RequestBody String question) {
return ragService.answerQuestion(question);
}
}
总结
本文详细介绍了如何在Spring Boot项目中集成Spring AI和RAG技术,构建一个智能问答系统。通过结合Milvus向量数据库和OpenAI Embedding模型,能够高效地实现语义检索和答案生成。希望本文能为你在AI领域的探索提供帮助。