Spring Boot集成Spring AI与Milvus实现智能问答系统

在Spring Boot中集成Spring AI与Milvus实现智能问答系统

引言

随着人工智能技术的快速发展,越来越多的开发者希望将AI能力集成到自己的应用中。本文将介绍如何在Spring Boot项目中集成Spring AI和向量数据库Milvus,构建一个高效的智能问答系统。

技术栈

  • 核心框架: Spring Boot
  • AI框架: Spring AI
  • 向量数据库: Milvus
  • 其他工具: Lombok, MapStruct

环境准备

  1. 安装Milvus: 首先需要在本地或服务器上安装Milvus,并启动服务。
  2. 创建Spring Boot项目: 使用Spring Initializr创建一个新的Spring Boot项目,添加必要的依赖。

集成Spring AI

Spring AI是一个新兴的框架,提供了与多种AI模型集成的能力。以下是集成步骤:

  1. 添加依赖: 在pom.xml中添加Spring AI的依赖。

    <dependency>
        <groupId>org.springframework.ai</groupId>
        <artifactId>spring-ai-milvus</artifactId>
        <version>1.0.0</version>
    </dependency>
    
  2. 配置Milvus连接: 在application.properties中配置Milvus的连接信息。

    spring.ai.milvus.host=localhost
    spring.ai.milvus.port=19530
    
  3. 实现问答逻辑: 创建一个服务类,调用Spring AI的API实现问答功能。

    @Service
    public class AIService {
        @Autowired
        private MilvusClient milvusClient;
    
        public String answerQuestion(String question) {
            // 调用AI模型生成答案
            return "这里是生成的答案";
        }
    }
    

集成Milvus

Milvus是一个高性能的向量数据库,非常适合存储和检索AI生成的向量数据。以下是集成步骤:

  1. 添加依赖: 在pom.xml中添加Milvus的Java SDK依赖。

    <dependency>
        <groupId>io.milvus</groupId>
        <artifactId>milvus-sdk-java</artifactId>
        <version>2.0.0</version>
    </dependency>
    
  2. 配置Milvus集合: 在Milvus中创建一个集合,用于存储问答数据。

    @Service
    public class MilvusService {
        @Autowired
        private MilvusClient milvusClient;
    
        public void createCollection() {
            // 创建集合逻辑
        }
    }
    

实现智能问答系统

将Spring AI和Milvus结合,可以实现一个高效的智能问答系统。以下是核心逻辑:

  1. 用户提问: 用户通过前端界面提交问题。
  2. 生成向量: 使用Spring AI将问题转换为向量。
  3. 检索答案: 在Milvus中检索最相似的答案向量。
  4. 返回答案: 将检索到的答案返回给用户。

总结

本文详细介绍了如何在Spring Boot项目中集成Spring AI和Milvus,实现智能问答系统。通过合理的架构设计和代码实现,开发者可以快速掌握AI技术在Java生态中的应用。

参考资料

  1. Spring AI官方文档
  2. Milvus官方文档
内容概要:本文档主要介绍了Intel Edge Peak (EP) 解决方案,涵盖从零到边缘高峰的软件配置和服务管理。EP解决方案旨在简化客户的入门门槛,提供一系列工具和服务,包括Edge Software Provisioner (ESP),用于构建和缓存操作系统镜像和软件栈;Device Management System (DMS),用于远程集群或本地集群管理;以及Autonomous Clustering for the Edge (ACE),用于自动化边缘集群的创建和管理。文档详细描述了从软件发布、设备制造、运输、安装到最终设备激活的全过程,并强调了在不同应用场景(如公共设施、工业厂房、海上油井和移动医院)下的具体部署步骤和技术细节。此外,文档还探讨了安全设备注册(FDO)、集群管理、密钥轮换和备份等关键操作。 适合人群:具备一定IT基础设施和边缘计算基础知识的技术人员,特别是负责边缘设备部署和管理的系统集成商和运维人员。 使用场景及目标:①帮助系统集成商和客户简化边缘设备的初始配置和后续管理;②确保设备在不同网络环境下的安全启动和注册;③支持大规模边缘设备的自动化集群管理和应用程序编排;④提供详细的密钥管理和集群维护指南,确保系统的长期稳定运行。 其他说明:本文档是详细描述了Edge Peak技术及其应用案例。文档不仅提供了技术实现的指导,还涵盖了策略配置、安全性和扩展性的考虑,帮助用户全面理解和实施Intel的边缘计算解决方案。
### spring-ai-milvus-store-spring-boot-starter 的使用说明 `spring-ai-milvus-store-spring-boot-starter` 是一个用于将 Milvus 集成Spring Boot 项目中的依赖。它提供了对 Milvus 向量数据库的支持,便于开发者在应用中实现向量存储和检索功能。以下是关于如何配置和集成该依赖的详细说明。 #### 1. 添加依赖 在项目的 `pom.xml` 文件中添加以下依赖项: ```xml <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-milvus-store-spring-boot-starter</artifactId> </dependency> ``` 此依赖项会自动引入 Milvus 客户端以及其他必要的组件[^1]。 #### 2. 配置文件设置 在 `application.yml` 或 `application.properties` 文件中配置 Milvus 相关参数。以下是一个典型的配置示例: ```yaml spring: application: name: spring-ai-milvus-example ai: vectorstore: milvus: client: host: xxx.xxx.xxx.xxx port: 19530 username: root password: xxxxxx collectionName: vector_store1 initializeSchema: true embeddingDimension: 1024 indexType: IVF_FLAT metricType: COSINE ``` - **host**: Milvus 数据库的主机地址。 - **port**: Milvus 数据库的端口号,默认为 `19530`。 - **username** 和 **password**: 如果启用了认证,则需要提供用户名和密码。 - **collectionName**: 向量存储的集合名称。 - **initializeSchema**: 是否初始化 Milvus 表结构。 - **embeddingDimension**: 嵌入向量的维度。 - **indexType**: 索引类型,例如 `IVF_FLAT`、`HNSW` 等。 - **metricType**: 度量类型,例如 `COSINE` 或 `L2`[^4]。 #### 3. 使用示例 以下是一个简单的代码示例,展示如何在项目中使用 Milvus 存储和检索向量数据。 ```java import org.springframework.beans.factory.annotation.Autowired; import org.springframework.ai.vectorstore.milvus.MilvusVectorStore; import org.springframework.stereotype.Service; @Service public class VectorService { @Autowired private MilvusVectorStore milvusVectorStore; public void storeVector(String id, double[] vector) { milvusVectorStore.add(id, vector); } public double[] searchVector(double[] queryVector, int topK) { return milvusVectorStore.search(queryVector, topK); } } ``` - **storeVector**: 将向量数据存储到 Milvus 中。 - **searchVector**: 根据查询向量检索最相似的向量。 #### 4. 测试验证 完成上述步骤后,可以通过单元测试或集成测试验证 Milvus集成是否成功。可以参考 GitHub 上的示例项目进行进一步学习[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uranus^

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值