在Spring Boot中集成Spring AI与Milvus实现智能问答系统
引言
随着人工智能技术的快速发展,越来越多的开发者希望将AI能力集成到自己的应用中。本文将介绍如何在Spring Boot项目中集成Spring AI和向量数据库Milvus,构建一个高效的智能问答系统。
技术栈
- 核心框架: Spring Boot
- AI框架: Spring AI
- 向量数据库: Milvus
- 其他工具: Lombok, MapStruct
环境准备
- 安装Milvus: 首先需要在本地或服务器上安装Milvus,并启动服务。
- 创建Spring Boot项目: 使用Spring Initializr创建一个新的Spring Boot项目,添加必要的依赖。
集成Spring AI
Spring AI是一个新兴的框架,提供了与多种AI模型集成的能力。以下是集成步骤:
-
添加依赖: 在
pom.xml
中添加Spring AI的依赖。<dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-milvus</artifactId> <version>1.0.0</version> </dependency>
-
配置Milvus连接: 在
application.properties
中配置Milvus的连接信息。spring.ai.milvus.host=localhost spring.ai.milvus.port=19530
-
实现问答逻辑: 创建一个服务类,调用Spring AI的API实现问答功能。
@Service public class AIService { @Autowired private MilvusClient milvusClient; public String answerQuestion(String question) { // 调用AI模型生成答案 return "这里是生成的答案"; } }
集成Milvus
Milvus是一个高性能的向量数据库,非常适合存储和检索AI生成的向量数据。以下是集成步骤:
-
添加依赖: 在
pom.xml
中添加Milvus的Java SDK依赖。<dependency> <groupId>io.milvus</groupId> <artifactId>milvus-sdk-java</artifactId> <version>2.0.0</version> </dependency>
-
配置Milvus集合: 在Milvus中创建一个集合,用于存储问答数据。
@Service public class MilvusService { @Autowired private MilvusClient milvusClient; public void createCollection() { // 创建集合逻辑 } }
实现智能问答系统
将Spring AI和Milvus结合,可以实现一个高效的智能问答系统。以下是核心逻辑:
- 用户提问: 用户通过前端界面提交问题。
- 生成向量: 使用Spring AI将问题转换为向量。
- 检索答案: 在Milvus中检索最相似的答案向量。
- 返回答案: 将检索到的答案返回给用户。
总结
本文详细介绍了如何在Spring Boot项目中集成Spring AI和Milvus,实现智能问答系统。通过合理的架构设计和代码实现,开发者可以快速掌握AI技术在Java生态中的应用。