数据结构与算法分析(Weiss)
文章平均质量分 66
ManHand1996
上路
展开
-
伸展树(Splay tree)
声明:感谢作者提供 转载出处:http://kmplayer.iteye.com/blog/566937 伸展树(Splay Tree)是一种二叉排序树,它能在O(log n)内完成插入、查找和删除操作。它由Daniel Sleator和Robert Tarjan创造。它的优势在于不需要记录用于平衡树的冗余信息。在伸展树上的一般操作都基于伸展操作。 为什么需要伸展树(Splay转载 2016-10-25 19:33:34 · 430 阅读 · 0 评论 -
Weiss-(DSAA - in C,2.13)求素数的3个方法
------------------------------转载分割线------------------------------- 1、根据质数的定义求 质数定义:只能被1或者自身整除的自然数(不包括1),称为质数。 利用它的定义可以循环判断该数除以比它小的每个自然数(大于1),如果有能被它整除的,则它就不是质数。 对应代码是: void printPrime(int n)转载 2016-10-13 19:03:39 · 426 阅读 · 0 评论 -
Weiss-(DSAA - in C,2.12)最大子序列求和
最大子序列求和: A[] = {-7,5,-2,15,1,0,4} 方法1:二分法: (1).分解成最小子问题 left {-7,5,-2} right {15,1,0} /*1 left {-7,5} right{-2} left{15,1} right {0} /*2 left right {-7} {5}原创 2016-10-13 18:14:54 · 298 阅读 · 0 评论 -
Weiss-(DSAA - in C,2.12)最大连续子序列乘积
-----非原创---- 问题描述 给定一个整数序列(可能有正数,0和负数),求它的一个最大连续子序列乘积。比如给定数组a={3, -4, -5, 6, -2},则最大连续子序列乘积为360,即3*(-4)*(-5)*6=360。 分析 求最大连续子序列乘积与最大连续子序列和问题有所不同,因为其中有正有负还有可能有0。 假设数组为a[],直接利用动归来求解,考虑到可能存在原创 2016-10-13 18:12:47 · 310 阅读 · 0 评论 -
Weiss-(DSAA - in C,2.10)Horner法则求多项式
求一个多项式 F(x) = anxn+ an-1xn-1+...+ a1x + a0 最暴力的方法每一项去求积然后再求和,那么算法复杂度为:O(N^2+N) 但使用Horner法则就简单得多:O(N)称线性 F( x ) = ((…((( (0+ an)x +an-1)x+an-2)x+ an-3)…)x+a1)x+a0 例子:F(X)= 2x^4-x^3+3x^2+x-5原创 2016-10-12 20:13:51 · 386 阅读 · 0 评论 -
Weiss-(DSAA - in C,2.9/2.16)快速求幂(递归与非递归)
如果用递归的方法求幂, 代码可以是这样的: 1 double Pow(double x, unsigned int n) 2 { 3 if (n == 0) 4 return 1; 5 if (n == 1) 6 return x; 7 if (n & 1 == true) // 如果n是奇数 8原创 2016-10-14 20:01:28 · 503 阅读 · 0 评论 -
Weiss-(DSAA - in C,1.3)字谜游戏
-------------------------数据结构与算法分析(C描述,By Weiss)-------------------------------- #虽说是C描述,但是没有怎么学过C,所以用C++(对C++相对熟悉)写,感觉问题不大吧.... --------第一章-------- 1.3 编写程序求解字谜游戏问题 #include #include us原创 2016-10-09 11:52:58 · 724 阅读 · 0 评论 -
Weiss-(DSAA - in C,2.19) 大小为N的数组A,其主要元素出现次数超过N/2
/* 大小为N的数组A,其主要元素是一个出现次数超过N/2的元素(这样的元素只有一个) 算法概要: 第一步: 找出主要元素的一个候选元(这是难点)。这个候选元是唯一有可能是主要元素的元素。 第二步: 确定是否这个候选元是主要元素。 为了找出候选元,构造第二个数组B。 比较A1和A2,如果它们相等则取其中之一加到数组B中;否则什么都不原创 2016-10-15 18:57:12 · 1184 阅读 · 0 评论