生存分析与剂量反应建模相关知识解析
在生存分析和剂量反应建模领域,有许多重要的概念和方法值得深入探讨。下面将详细介绍相关内容。
1. MCE模型相关函数
 对于MCE模型,有如下函数定义: 
 [h(x; \tilde{\beta}(t); \theta) = (h_{\alpha}(x; \tilde{\beta}(t); \theta), h_{\gamma}(x; \tilde{\beta}(t); \theta), h_{\delta}(x; \tilde{\beta}(t); \theta))] 
 其中: 
 - (h_{\alpha}(x; \tilde{\beta}(t); \theta) = x) 
 - (h_{\gamma}(x; \tilde{\beta}(t); \theta) = \frac{x\tilde{\beta}(t; \theta)}{1 + \gamma^T x\tilde{\beta}(t; \theta) + \delta^T x\tilde{\beta}^2(t; \theta)}) 
 - (h_{\delta}(x; \tilde{\beta}(t); \theta) = \frac{x\tilde{\beta}^2(t; \theta)}{1 + \gamma^T x\tilde{\beta}(t; \theta) + \delta^T x\tilde{\beta}^2(t; \theta)}) 
2. 修正部分似然估计
为了估计未知参数(\theta),采用修正部分似然方法。修正最大似然估计(\hat{\theta})是方程组(\tilde{U}(\theta) = 0)的解。
 
                       
                           
                         
                             
                             
                           
                           
                             超级会员免费看
超级会员免费看
                                         
                   订阅专栏 解锁全文
                订阅专栏 解锁全文
                 
             
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                  
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            