24、生存分析与剂量反应建模相关知识解析

生存分析与剂量反应建模相关知识解析

在生存分析和剂量反应建模领域,有许多重要的概念和方法值得深入探讨。下面将详细介绍相关内容。

1. MCE模型相关函数

对于MCE模型,有如下函数定义:
[h(x; \tilde{\beta}(t); \theta) = (h_{\alpha}(x; \tilde{\beta}(t); \theta), h_{\gamma}(x; \tilde{\beta}(t); \theta), h_{\delta}(x; \tilde{\beta}(t); \theta))]
其中:
- (h_{\alpha}(x; \tilde{\beta}(t); \theta) = x)
- (h_{\gamma}(x; \tilde{\beta}(t); \theta) = \frac{x\tilde{\beta}(t; \theta)}{1 + \gamma^T x\tilde{\beta}(t; \theta) + \delta^T x\tilde{\beta}^2(t; \theta)})
- (h_{\delta}(x; \tilde{\beta}(t); \theta) = \frac{x\tilde{\beta}^2(t; \theta)}{1 + \gamma^T x\tilde{\beta}(t; \theta) + \delta^T x\tilde{\beta}^2(t; \theta)})

2. 修正部分似然估计

为了估计未知参数(\theta),采用修正部分似然方法。修正最大似然估计(\hat{\theta})是方程组(\tilde{U}(\theta) = 0)的解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值