边缘智能系统的数据传输与远程监控挑战
1. 数据传输到云端
1.1 控制台访问
要访问控制台,需要用户名(默认为 debug)和密码。可以使用
get-debug-password
命令获取密码,示例命令及输出如下:
# sudo /greengrass/v2/bin/greengrass-cli get-debug-password
Sep 10, 2022 6:52:10 AM software.amazon.awssdk.eventstreamrpc.
EventStreamRPCConnection$1 onConnectionSetup
INFO: Socket connection /greengrass/v2/ipc.socket:8033 to
server result [AWS_ERROR_SUCCESS]
Sep 10, 2022 6:52:10 AM software.amazon.awssdk.eventstreamrpc.
EventStreamRPCConnection$1 onProtocolMessage
INFO: Connection established with event stream RPC server
Username: debug
Password: 2SJ4oF6ibB6xTIfvy3208AXD_RXEEHD0WLyfwQmzyUk
Password expires at: 2022-09-10T14:52:10.625413894-07:00
控制台可以显示组件的运行状态,还能直接更新配置并重启失败的组件。
1.2 数据处理与传输目标
在 AWS 平台上,将数据传输到云端有不同的设计和实现方式,主要取决于最终目标:
-
本地处理数据
:需要构建自定义组件,监听特定主题的响应。例如,主题
modbus/response/conveyer
对应 ModbusTCP 组件配置中的名称。在线示例中有此类组件的代码,可参考请求组件的开发流程。
-
数据转发到云端
:若仅需将数据转发到 IoT Core,可使用预构建组件,直接从本地 Greengrass IPC 消息将数据发送到云端。
实际应用中,通常是两者结合,先在本地进行一定的数据处理,再将处理后的数据发送到云端进行存储和评估。Greengrass MQTT 桥接组件可在不同区域(如客户端之间或到 AWS IoT Core)中继消息。
1.3 MQTT 桥接组件配置
为了将本地发布/订阅消息中继到 IoT Core,需要为 MQTT 桥接组件添加映射配置。以下是一个简单的配置示例,将本地系统的所有消息发送到云端:
{
"reset": [],
"merge": {
"mqttTopicMapping": {
"AllLocalMessages": {
"topic": "#",
"source": "Pubsub",
"target": "IotCore"
}
}
}
}
大多数公共组件需要进行一些定制,如权限设置或参数调整,以实现所需功能。在部署时,可选择组件并查看其配置。对于大规模工业边缘部署,使用通配符参数监听特定主题并非总是最安全的做法,应考虑零信任或最小权限原则。
1.4 数据发送验证
部署 MQTT 桥接组件后,它应将消息发送到云端。若未看到数据,需检查 Greengrass 服务角色的权限,添加向 IoT Core 发送数据的策略。在 AWS IoT MQTT 客户端中,应能看到原始请求和响应。ModbusTCP 适配器有多个写命令,如
WriteSingleCoil
,可用于设置生产系统的值。
1.5 Sparkplug 协议
数据发送到 IoT Core 的是简单的 MQTT 数据,而 Sparkplug 协议由 Eclipse 基金会管理(https://sparkplug.eclipse.org/),在 MQTT 协议基础上增加了额外信息,包括更详细的命名空间和状态管理。目前 AWS IoT Core 不原生支持 Sparkplug 协议,可通过 AWS SiteWise 等方式处理此类消息。
2. 远程监控的必要性
2.1 远程监控的概念与优势
远程系统监控是指以系统和可量化的方式监控远离用户的系统行为。通过集中平台获取运营数据和现场传感器数据,实现了远程监控。它将传统的手动记录系统行为和事后响应故障的模式,转变为更主动和预防性的服务与维护方式。特别是对于位于偏远、难以访问位置的系统,远程监控能确保系统的持续运行。
2.2 有无远程监控的用户旅程对比
| 对比项 | 无远程监控 | 有远程监控 |
|---|---|---|
| 故障处理方式 | 故障发生时,系统功能停止,团队匆忙评估问题,在缺乏历史数据和模式的情况下寻找根本原因,提出解决方案。若需更换故障组件,有采购的前置时间,修复后系统重新运行,平均修复时间(MTTR)长,机会损失大,维护人员压力大。 | 持续获取运营和控制系统、现场传感器及辅助系统的数据,通过数据分析算法预测潜在故障场景和单个组件的平均故障时间(MTTF)。提前调配备件和服务人员,选择非高峰时段进行计划内停机维护,系统提前预防问题,投资回报率易量化。 |
2.3 无人机和机器人在管道监测中的应用
石油管道及其基础设施分布广泛,需要频繁检查以确保维护和安全标准。静态监测基础设施复杂、昂贵且会影响运营,无人机和移动自主机器人可扫描数百公里的管道,检测异常和破坏并立即修复。无人机上的先进传感器和成像设备可识别问题,地面的轮式机器人可标记和解决可解决的问题(如拧紧阀门)。
3. 长距离数据采集挑战
3.1 数据采集的重要性与现状
数据采集是数据处理流程中的关键问题。尽管技术和通信机制有了很大发展,但不同地区的适用性、覆盖范围和规模仍不一致,用户对协议的采用也影响其普及程度,形成了一个相互制约的局面。
3.2 无线传输技术对比
不同的无线传输技术在传输距离和数据带宽上有不同表现,以下是一个简单的示意表格(实际情况更复杂):
| 技术类型 | 传输距离 | 数据带宽 |
| ---- | ---- | ---- |
| 5G | 相对较短,适合城市等人口密集区域 | 高带宽 |
| 卫星 | 长距离,可覆盖全球 | 带宽因卫星类型和配置而异 |
| 长距离无线 | 长距离,但带宽相对较低 |
3.3 边缘与云端处理决策
在架构设计中,需要在边缘和云端之间做出处理和推理的决策。以下是一些常见场景的对比:
| 场景 | 边缘处理 | 云端处理 |
| ---- | ---- | ---- |
| 实时响应决策(如因警报停机) | 通常由边缘控制器处理 | 不适用 |
| 自主系统控制 | 整个控制由边缘负责 | 结果和决策记录到云端 |
| 多实例集中管理和人工决策 | 数据推理可通信到云端或在云端计算 | 适用 |
3.4 自适应比特率相机
IP 相机现在能够运行机器学习模型,具有智能响应和自适应行为的能力:
-
识别感兴趣区域
:使用计算机视觉模型,相机可识别视野内的活动区域,进行变焦或裁剪,仅传输相关数据。
-
节省带宽
:检测到不活动期时,相机可切换到低比特率模式,减少每秒帧数。还能仅发送变化的帧数据,通过边缘的重建算法恢复完整帧。
4. 太阳能农场远程监控案例
4.1 太阳能农场概述
太阳能农场地理分布广泛,将太阳能转化为直流电。每个农场由多个串联的太阳能电池板阵列组成,电池板由光伏电池构成。光伏电池受光时,其电学性质(电流、电压和电阻)会发生变化。此外,太阳能农场还包括电表、交流隔离器、保险丝盒、电池存储、逆变器、直流隔离器、电缆、支架、太阳跟踪系统和电网传输系统等基础设施。
4.2 远程监控的必要性
由于太阳能农场基础设施昂贵且通常位于偏远地区,人工监控几乎不可能。远程智能监控是一种可行的商业解决方案,可集成清洁系统、运营监控和周边监控系统。其优点包括避免计划外停机、减少现场检查和维护成本,同时符合环境可持续性原则。
4.3 太阳能农场面临的风险
太阳能农场面临以下四种主要风险:
-
火灾风险
:太阳能热捕获和高电流通过会产生大量热量,导致高电阻接头和组件退化。若不及时检测热点并更换老化组件,可能引发火灾。分布式传感器系统可监测电流、温度和湿度,及时采取控制措施。
-
破坏和盗窃风险
:太阳能基础设施昂贵,且农场位置偏远,易受盗窃和破坏。需要一个 24x7x365 无缝运行的强大监控系统,结合音频、视觉和热成像技术保障周边安全。考虑带宽限制,可采用数据智能技术,如将推理和纠正措施卸载到边缘或采用自适应数据传输机制。
-
高运营成本风险
:太阳能农场通常位于干旱地区,面板易积尘,降低能源转换效率,需要定期清洁。农场还需经常除草,以防止植物生长在面板上。若资产健康监测未自动化,将是一项劳动密集型工作,增加运营成本和碳足迹。
-
网络攻击风险
:太阳能农场可能受到网络攻击,恶意设备可进入物理网络。由于大多数农场连接到公用电网,攻击面增加,需要加强防护以防止网络威胁。
4.4 解决方案架构设计
太阳能农场远程监控解决方案采用边缘重心架构,将计算、推理和决策过程卸载到现场,以确保在网络不可用时系统仍能正常运行。主要组件包括传感器、边缘设备、通信网络和云端平台。以下是一个简单的 mermaid 流程图,展示数据从传感器到云端的流动:
graph LR
A[传感器] --> B[边缘设备]
B --> C{数据处理与决策}
C -->|本地决策| D[本地控制]
C -->|数据上传| E[通信网络]
E --> F[云端平台]
F -->|分析与存储| G[数据存储]
F -->|远程控制| H[远程操作]
该架构基于开放标准和模块化组件,便于未来集成新服务。单个聚合监控平台可服务多个太阳能农场。
5. 碳捕获与存储单元远程监控案例
5.1 碳捕获与存储单元概述
碳捕获与存储(CCS)单元旨在捕获工业过程中产生的二氧化碳,并将其安全地存储在地下,以减少温室气体排放。这些单元通常位于偏远地区,如沙漠或海洋附近,以确保有足够的存储空间和合适的地质条件。CCS 单元的主要组成部分包括捕获设备、运输管道和存储设施。
5.2 远程监控的重要性
与太阳能农场类似,CCS 单元的远程监控至关重要。由于其位置偏远,人工检查和维护成本高且困难。远程监控可以实时监测单元的运行状态,及时发现潜在问题,确保系统的安全性和可靠性。此外,远程监控还可以帮助优化碳捕获和存储过程,提高效率。
5.3 CCS 单元面临的挑战
CCS 单元面临着与太阳能农场不同但同样严峻的挑战:
-
地质风险
:存储设施的地质稳定性是一个关键问题。如果地质结构发生变化,可能导致二氧化碳泄漏,对环境造成严重影响。因此,需要实时监测地质参数,如地震活动、地下水位等。
-
设备故障
:捕获设备和运输管道的故障可能导致二氧化碳泄漏或系统停机。定期维护和故障预测是确保设备正常运行的关键。
-
数据传输
:偏远地区的数据传输仍然是一个挑战。由于网络基础设施有限,可能存在带宽不足、延迟高和数据丢失等问题。
5.4 解决方案架构设计
CCS 单元远程监控解决方案也采用边缘重心架构,以应对数据传输和实时决策的挑战。以下是架构的主要组件和流程:
| 组件 | 功能 |
| ---- | ---- |
| 传感器 | 监测地质参数、设备状态和二氧化碳浓度等数据。 |
| 边缘设备 | 收集传感器数据,进行本地处理和决策,如故障预警。 |
| 通信网络 | 将数据从边缘设备传输到云端平台。 |
| 云端平台 | 存储和分析数据,提供远程监控和管理功能。 |
mermaid 流程图展示数据流动和处理过程:
graph LR
A[传感器] --> B[边缘设备]
B --> C{数据处理与决策}
C -->|本地决策| D[本地控制]
C -->|数据上传| E[通信网络]
E --> F[云端平台]
F -->|分析与存储| G[数据存储]
F -->|远程控制| H[远程操作]
F -->|故障预警| I[警报通知]
6. 远程监控系统设计原则
6.1 基于需求和约束设计
无论是太阳能农场还是 CCS 单元的远程监控系统,都应根据具体需求和约束进行设计。在满足功能需求的同时,要考虑成本、可维护性和扩展性。例如,在数据传输方面,要根据偏远地区的网络条件选择合适的技术。
6.2 平衡过度工程和未来规划
设计过程中需要平衡过度工程和未来规划。过度工程可能导致成本过高,而忽视未来需求可能导致系统无法适应变化。因此,应采用模块化和开放标准的设计,便于未来集成新功能和技术。
6.3 考虑可持续性
在架构设计中,应考虑可持续性因素。例如,减少能源消耗、降低碳足迹和提高资源利用率。远程监控系统可以通过优化数据传输和处理方式,实现节能减排的目标。
6.4 遵循零信任或最小权限原则
为了确保系统的安全性,应遵循零信任或最小权限原则。在授权访问时,只给予必要的权限,减少潜在的安全风险。特别是对于涉及关键基础设施的远程监控系统,安全是至关重要的。
7. 总结
7.1 主要成果回顾
通过本文的介绍,我们了解了数据传输到云端的方法,包括使用 Greengrass MQTT 桥接组件和 Sparkplug 协议。同时,探讨了远程监控的必要性和面临的挑战,以及在太阳能农场和碳捕获与存储单元中的应用案例。我们还学习了远程监控系统的设计原则,包括基于需求和约束设计、平衡过度工程和未来规划、考虑可持续性和遵循零信任或最小权限原则。
7.2 未来展望
随着技术的不断发展,远程监控系统将变得更加智能和高效。例如,人工智能和机器学习技术可以用于更准确地预测故障和优化系统运行。此外,5G 网络和卫星通信的发展将改善偏远地区的数据传输条件。未来,远程监控系统将在更多领域得到应用,为工业生产和环境保护提供有力支持。
总之,远程监控是实现工业自动化和可持续发展的重要手段。通过合理设计和应用远程监控系统,可以提高系统的可靠性、降低成本、减少环境影响,为社会带来巨大的效益。

被折叠的 条评论
为什么被折叠?



