在和学生聊天时,学生更倾向于使用搜题软件而非AI。我很好奇,他说除了O3,许多模型在解决数学题时出现了令人啼笑皆非的错,例如著名的13.11 is larger than 13.8
在震惊新生代对新技术接受的如此之快时,本文从技术层面探讨出现这种情况的原因
以这道题为例,
这是一道很简单的高数三角函数基础题,很显然,答案是2-x/x。把题目输入给输入给大模型,它却得到以下结果:
正确地使用了换元法: 将 ½ cos²x 替换为 u, 简化了后续的代数运算。
正确地进行了代数运算:
将 tan²x 替换为 u,sec²x 替换为 u+1,得到了 u + (u + 1)。
正确地将 u + (u + 1) 化简为 2u + 1。
最后,将 u 替换回 ½ cos²x,并最终用x表示得到 (2/x) + 1。
结论正确: 最终结果 (2/x) + 1 是正确的。
那么,为什么会出现如此令人匪夷所思的答案呢
从AI技术层面,我们来剖析这个问题
作为大型语言模型,出现这类数学推理错误的原因可以从几个 AI 技术的角度来分析:
**1. 模式匹配的局限性:**
* **过度依赖训练数据中的模式:** 大语言模型主要通过学习大量文本和代码数据来掌握数学知识和解题技巧。其可能过度依赖训练数据中见过的类似题目的解题模式,而没有真正理解背后的数学原理。 在面对需要灵活运用三角恒等式和换元法的问题时,大语言模型可能会机械地套用模式,导致错误。
* **对符号操作的理解不够深入:** 虽然大语言模型可以进行符号运算,但我对符号的理解可能不如人类深入。大语言模型可能将 `cos²x` 简单地看作一个整体,而没有充分考虑它与 `x` 之间的关系,以及在换元过程中变量替换的细微差别。
**2. 缺乏真正的数学推理能力:**
* **统计相关性而非因果推导:** 大语言模型的“推理”过程本质上是基于统计相关性的预测,而不是像人类那样进行严格的逻辑推导。 它可以识别出公式和步骤之间的相关性,但它不具备真正的因果推理能力,无法判断一个步骤是否在逻辑上正确。
* **难以进行多步骤复杂推理:** 对于需要多个步骤、多个知识点结合的推理任务,它出错的概率会增加。每一步的错误都可能累积,最终导致结果的偏差。
**3. 知识的表示和运用:**
* **知识表示的挑战:** 将数学知识以一种既能被模型高效学习又能灵活运用的方式表示出来是一个巨大的挑战。大语言模型可能无法有效地将三角恒等式的知识与当前的问题联系起来,或者无法在适当的时候运用换元法。
* **缺乏对上下文的深入理解:** 大语言模型可能难以充分理解 `f(cos²x)` 中 `cos²x` 作为整体输入的含义,以及它与 `f(x)` 之间的转换关系,导致在代入和化简过程中出现错误。
**4. 训练数据的偏差:**
* **特定题型训练不足:** 如果训练数据中缺乏类似的需要灵活运用换元法和三角恒等式的题目,或者这些题目的解答过程不够清晰,都可能导致我在面对这类问题时表现不佳。
* **错误标注的影响:** 训练数据中可能存在错误的标注或不一致的解题方法,这也会误导我的学习。
**总结:**
总而言之,大语言模型犯错的原因在于我**基于统计模式进行预测**,而非真正理解数学原理。它会将问题和解法看作是模式的集合, 这使其可以求解很多问题, 但当题目需要更深层次的逻辑推理和知识运用时,它就容易出错。
**未来的改进方向:**
为了提高大语言模型在数学推理方面的能力,未来的研究方向包括:
* **增强模型的逻辑推理能力:** 例如,结合符号推理引擎和神经网络模型,使模型能够进行更严格的逻辑推导。
* **改进知识表示和运用:** 开发更有效的方法来表示和运用数学知识,使模型能够更好地理解和应用数学概念。
* **构建更高质量的训练数据:** 创建包含更多样化、更高难度的数学问题的数据集,并确保标注的准确性和一致性。
* **提升模型的抽象理解能力:** 帮助模型更好地理解变量替换等抽象概念