L3-017 森森快递 (30 point(s)) 区间贪心+线段树区间更新

7 篇文章 0 订阅
5 篇文章 0 订阅

森森开了一家快递公司,叫森森快递。因为公司刚刚开张,所以业务路线很简单,可以认为是一条直线上的N个城市,这些城市从左到右依次从0到(N−1)编号。由于道路限制,第i号城市(i=0,⋯,N−2)与第(i+1)号城市中间往返的运输货物重量在同一时刻不能超过C​i​​公斤。

公司开张后很快接到了Q张订单,其中j张订单描述了某些指定的货物要从S​j​​号城市运输到T​j​​号城市。这里我们简单地假设所有货物都有无限货源,森森会不定时地挑选其中一部分货物进行运输。安全起见,这些货物不会在中途卸货。

为了让公司整体效益更佳,森森想知道如何安排订单的运输,能使得运输的货物重量最大且符合道路的限制?要注意的是,发货时间有可能是任何时刻,所以我们安排订单的时候,必须保证共用同一条道路的所有货车的总重量不超载。例如我们安排1号城市到4号城市以及2号城市到4号城市两张订单的运输,则这两张订单的运输同时受2-3以及3-4两条道路的限制,因为两张订单的货物可能会同时在这些道路上运输。

输入格式:

输入在第一行给出两个正整数N和Q(2≤N≤10​5​​, 1≤Q≤10​5​​),表示总共的城市数以及订单数量。

第二行给出(N−1)个数,顺次表示相邻两城市间的道路允许的最大运货重量C​i​​(i=0,⋯,N−2)。题目保证每个C​i​​是不超过2​31​​的非负整数。

接下来Q行,每行给出一张订单的起始及终止运输城市编号。题目保证所有编号合法,并且不存在起点和终点重合的情况。

输出格式:

在一行中输出可运输货物的最大重量。

输入样例:

10 6
0 7 8 5 2 3 1 9 10
0 9
1 8
2 7
6 3
4 5
4 2

输出样例:

7

样例提示:我们选择执行最后两张订单,即把5公斤货从城市4运到城市2,并且把2公斤货从城市4运到城市5,就可以得到最大运输量7公斤。

思路:首先这个很容易想到区间的贪心,区间的贪心一般是这么个分析思路:按照什么顺序来选择区间?如何排序?

显然城市[l,r]之间的最大运输量是途经路段载荷的最小值

首先考虑区间不相交的情况:不相交的两个区间哪个先选都没有影响,能运输的货物重量为ans=min[l_1,r_1]+min[l_2,r_2]

接着考虑包含的情况,若[l_1,r_1] \subseteq [l_2,r_2],那么min[l_2,r_2]<=min[l_1,r_1],选择[l_1,r_1]不仅能获得较大的运输货物量,并且其他区间的占用更少,别的区间能载更多货物

最后是局部相交的情况:最大运货量一定是要么是相交部分的最小值(因为不管选哪个订单都会经过相交部分,两个订单的量加起来不能超过相交部分),要么是不相交的部分更小,两个都可以选一部分,如果是前种情况,选择订单1和订单2没有区别,如果是后种情况

1、若两个都选能凑到相交部分的最小值,那么先选前面和先选后面没区别

2、若两个都选凑不到相交部分的最小值,那么先选前面和先选后面的也没区别

附上三个小时才结束代码。。。再次强烈安利广大胖友写博客,暑假做过的那么多线段树的题就跟白做了一样

#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
const int N=1e5+10;
struct node
{
    int l,r;
    LL val;
    int lazy;
}tr[N<<2];

int num[N];
void push_up(int root)
{
    tr[root].val=min(tr[root<<1].val,tr[root<<1|1].val);
}
void build(int root,int l,int r)
{
    tr[root].l=l;
    tr[root].r=r;
    tr[root].lazy=0;
    if(l==r)
    {
        cin>>tr[root].val;
        return ;
    }
    int mid=(l+r)>>1;
    build(root<<1,l,mid);
    build(root<<1|1,mid+1,r);
    push_up(root);
}
void push_down(int root)
{
    if(tr[root].lazy)
    {
        tr[root<<1].lazy+=tr[root].lazy;           //注意是+=,写成+过不了最后一个点
        tr[root<<1|1].lazy+=tr[root].lazy;
        tr[root<<1].val+=tr[root].lazy;
        tr[root<<1|1].val+=tr[root].lazy;
        tr[root].lazy=0;
    }
}

LL query(int root,int l,int r)                                          //[l,r]是待查区间,[tr[root].l,tr[root].r]是当前区间
{
    if(l<=tr[root].l&&r>=tr[root].r)    return tr[root].val;            //待查区间包含当前区间,直接返回当前区间的最小值
    int mid=(tr[root].l+tr[root].r)>>1;
    if(tr[root].lazy)   push_down(root);
    LL ans;                                                             //待查区间完全在左边
    if(r<=mid)  return query(root<<1,l,r);
    else if(l>mid) return query(root<<1|1,l,r);
    else   ans=min(query(root<<1,l,mid),query(root<<1|1,mid+1,r));
    return ans;
}

void update(int root,int l,int r,int val)
{
    if(l<=tr[root].l&&r>=tr[root].r)
    {
        tr[root].lazy+=val;
        tr[root].val+=val;
        return ;
    }
    if(tr[root].lazy) push_down(root);
    int mid=(tr[root].l+tr[root].r)>>1;
    if(r<=mid) update(root<<1,l,r,val);
    else if(l>mid) update(root<<1|1,l,r,val);
    else
    {
        update(root<<1,l,mid,val);
        update(root<<1|1,mid+1,r,val);
    }
    push_up(root);
}
//pair<int,int> p[N];
struct point
{
    int s;
    int t;
    point(){};
    point(int s,int t):s(s),t(t){}
    bool operator<(const point &rhs)const
    {
        if(t==rhs.t)
            return s>rhs.s;
        else return t<rhs.t;
    }
}p[N];
int main()
{
    int n,q;
    cin>>n>>q;
    build(1,1,n-1);                                 //
    int a,b;
    for(int i=1;i<=q;++i)
    {
        cin>>a>>b;
        if(a>b) swap(a,b);
        p[i]=point(a,b);                                 //优先终点按从小到大,终点相同应该从大到小
    }
    sort(p+1,p+1+q);
    LL ans=0;
    for(int i=1;i<=q;++i)
    {
        int s=p[i].s,t=p[i].t;                           //下标不一致,debug两行泪 按照题目的下标设定,我应该查询[s,t-1],但是由于我是[1,n]建树,所以查询区间改成[s+1,t]
        LL num=query(1,s+1,t);
        if(num>0)
        {
            ans+=num;
            update(1,s+1,t,-num);

        }
    }
    cout<<ans<<endl;
    return 0;
}

太久没写线段树,以至于区间更新想不起来用线段树写出来的弱智代码

//这道题的直觉是 两个城市越近越好,优先选择订单经过的城市中负荷量最小值最大的订单比较好
//有点像区间的贪心问题emmm
//。。。这是不是01背包的变种
//dp[i]     //考虑前i个订单能获得的最大值

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=1e5+10;
const int INF=0x3f3f3f3f;
int c[N];
struct order
{
    int s,t;

}tran[N];
int dp[N];
int main()
{
    int n,q;
    cin>>n>>q;
    for(int i=1;i<=n-1;++i)
        cin>>c[i];
    for(int i=1;i<=q;++i)
        cin>>tran[i].s>>tran[i].t;
    memset(dp,0,sizeof(dp));
    for(int i=1;i<=n;++i)
    {
        int x=INF;
        for(int j=tran[i].s;j<tran[i].t;++j)
        {
            x=min(x,c[i]);
            //cout<<x<<endl;
        }
        if(x<0) dp[i]=dp[i-1];
        else
        {
            dp[i]=dp[i-1]+x;
            for(int j=tran[i].s;j<tran[i].t;++j)
            {
                c[j]-=x;
            }
        }
    }
    cout<<dp[n]<<endl;
    return 0;

}

 

  • 8
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 二叉搜索树是一种特殊的二叉树,它的每个节点都有一个键值,且满足左子树的所有节点的键值都小于该节点的键值,右子树的所有节点的键值都大于该节点的键值。这种结构使得二叉搜索树可以快速地进行查找、插入和删除操作。二叉搜索树的结构非常简单,每个节点包含三个部分:键值、左子树和右子树。因此,二叉搜索树的实现也非常容易,可以使用递归或迭代的方式实现。二叉搜索树的时间复杂度取决于树的高度,因此在实际应用中需要注意平衡二叉搜索树的使用,以避免出现极端情况导致时间复杂度退化。 ### 回答2: 二叉搜索树(Binary Search Tree,BST)是一种经典的数据结构,它是一棵二叉树,其中每个节点都包含一个键值,且每个节点的键值大于等于左子树的所有节点的键值,小于等于右子树的所有节点的键值。由此,BST 具有以下特点: 1. 对于任意节点,左子树上的所有节点都小于这个节点的键值,右子树上的所有节点都大于等于这个节点的键值; 2. 对于任意节点,它的左右子树也都是 BST。 由此可得,BST 并不是一棵完美平衡的树,它的高度取决于节点的插入顺序。最坏情况下,BST 可能退化成一条链表,导致时间复杂度变成 O(n)。因此,为了使 BST 的效率更高,我们需要对 BST 进行优化。有几种方法可以实现 BST 的优化,包括 AVL 树、红黑树、Treap 等。这些高效的 BST 实现往往基于平衡这一关键点,尽可能使得 BST 中的节点分布均匀,减少树的高度。通过这些优化,BST 可以在对数时间内执行插入、查找、删除等操作,成为一类非常重要的数据结构。 除了上述常规的 BST 实现,还有一种特殊的 BST,即 splay tree。相比于其他实现,它的旋转操作更为简单且直观,因此具有一定的应用价值。不过,splay tree 对于随机数据的表现很好,但在特定数据集下,会出现退化的情况。因此,在实际应用中,splay tree 并不是最优的选择。 总之,二叉搜索树是一种简单而常用的数据结构,它的实现可以基于不同的平衡算法,使得效率得以优化。在实际应用中,需要根据具体场景选择合适的 BST 实现,以达到最优化的效果。 ### 回答3: 二叉搜索树(Binary Search Tree),又称二叉查找树、有序二叉树(Ordered Binary Tree)、排序二叉树(Sorted Binary Tree),是指一棵空树或者具有下列特点的二叉树: 1. 若左子树不空,则左子树上所有结点的值均小于它的根结点的值; 2. 若右子树不空,则右子树上所有结点的值均大于它的根结点的值; 3. 左、右子树也分别为二叉搜索树; 4. 没有键值相等的节点。 二叉搜索树是一种实现了动态有序集合的非常优秀的数据结构,它可以在平均情况下实现基本操作(插入、查找、删除)的时间复杂度为O(logn),对于随机数据平衡性比其他树结构较好。 但是,不平衡的二叉搜索树时间复杂度可能会被退化为O(n),如当数据是已经排好序的时候,建立的二叉搜索树就会退化成一个单链表,此时操作效率也会比较低。 因此,在使用二叉搜索树时需要保证其平衡性,可以采用自平衡的方法如AVL树、红黑树等。 常见的操作有查找、插入、删除、前、中、后序遍历、最大、最小值查找等,其中插入、删除操作较为复杂,需要注意细节问题。 总的来说,二叉搜索树具有结构简单、易于实现、查找效率高等特点,但是也存在缺点,如容易退化、删除节点需重新建树等,需要选择合适的方法进行改进。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值