自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Somebody-AI

The more you know, the more you know you don't know.

  • 博客(121)
  • 资源 (1)
  • 收藏
  • 关注

原创 浅拷贝和深度拷贝区别小结与示例【2】【Python3面试实战的108个姿势】

文章目录浅拷贝和深度拷贝区别小结与示例根本的区别浅拷贝可变类型和不可变类型在浅拷贝中的区别深拷贝深拷贝对6种基本类型的影响浅拷贝和深度拷贝区别小结与示例根本的区别深拷贝和浅拷贝根本的区别在于是否真正获取一个对象的复制实体,而不是引用。假设B复制了A,修改A的时候,看B是否发生变化:如果B跟着也变了,说明是浅拷贝!(修改堆内存中的同一个值)如果B没有改变,说明是深拷贝!(修改堆内存中的不同的值)浅拷贝copy模块里面的copy方法实现1、对于 不可 变类型 Number String Tu

2020-12-01 16:39:25 36 2

原创 深度学习损失函数最全盘点系列【目录篇】

文章目录0 前言:1 损失函数1.1 定义1.2 本质1.3 基本要求1.4 高级要求1.5误差函数的选择2 损失函数特点3 常见的经典误差函数3.1 平均绝对误差MAE(L1 Loss)3.2 均方误差MSE(L2 Loss)3.3 Smooth L1损失3.4 Binary Cross Entropy Loss(二分类交叉熵)3.5 Cross Entropy Loss交叉熵损失3.6 Softmax Loss4、Falcal_loss5、GHM_loss6、IOU_loss系列6.1 IoU Loss

2020-11-30 15:50:35 68

原创 元组和列表的4个区别【1】【Python3面试实战的108个姿势】

【1】元组和列表的4个区别1:语法差异a = (1,2,3,4) # 元组b = [1,2,3,4] # 列表2:元组是只读的,列表是可读写的b[1] = 33.可变类型和不可变类型在浅拷贝中的区别元组copy_a = tuple(a)print(copy_a)print(a is copy_a) # True列表copy_b = list(b)b.append(“5”)print(b)print(copy_b)print(b is copy_b) # False4:大

2020-11-30 10:37:42 30

原创 图像金字塔、特征图像金字塔、FPN、FPT【图像处理系列__四】

图像金字塔、特征图像金字塔、FPN、FPT【图像处理系列__四】文章目录图像金字塔、特征图像金字塔、FPN、FPT【图像处理系列__四】1、前言:2、概述:3 摘要4 CNN到FPT的心路历程4.1 CNN4.2 特征金字塔4.3 FPN4.4 non-local卷积4.5 FPT5、FPT5.1 Non-Local Interaction Revisited5.2 Self-transformer(ST)5.3 Groundng Transformer(GT)5.4 Rendering Transfo

2020-11-25 11:01:01 577

原创 基于GPU加速的CUDA编程系列【前言目录篇】

基于GPU加速的CUDA编程系列前言:11月码文了一篇《使用Nsight Eclipse编写‘Hello World‘ 入门CUDA C》有读者朋友私信我,能不能再详细系统点,我想起了该文里说了句,最好有一定的C语言基础,估计大家大学时期的C语言基础也忘得差不多了,感谢这小伙伴的建议,让我决定整理下做成个专栏,每个章节都用代码示例目录:文章目录基于GPU加速的CUDA编程系列前言:目录:第一章 C语言重点回顾1 基本语法、数据类型2 变量、常量、存储类3 逻辑运算、判断循环语句4、作用域规则、数组

2020-11-06 16:07:49 1382

原创 Nsight Eclipse编写‘Hello World‘ 入门CUDA C--【基于GPU加速的CUDA编程系列--9】

从’Hello World’ 入门CUDA C1 前言:这篇主要围绕万能启蒙“hello world” 来入门CUDA C.PS,希望你有一定的C语言基础本篇包含:1.1 CUDA编程工具的安装、使用、技巧1.2 CUDA C版本的hello world” 编写1.3 CUDA C版本的hello world” 解析tips1.4 自己编译运行CUDA C版本的hello world”2 代码:#include <iostream>__global__ void myfi

2020-11-04 10:54:47 1692

原创 Pytorch自动求导机制、自定义激活函数和梯度【下】【深入Pytorch框架系列--3】

2 自定义激活函数和梯度前言里说了,仅仅使用模块有时候是不能满足我们需要效果的。我们需要自定义激活函数,在激活函数中定义前向传播和反向传播的代码来实现自己的需求。2.1 类及方法Pytorch自定义激活函数继承于torch.autograd.Function,其内部有2个静态方法:forward和backwardclass Func(torch.autograd.Function): @staticmethod def forward(ctx,input): retu

2020-11-03 18:34:03 1689 2

原创 视频目标检测MEGA,显著地提升视频物体检测--Memory Enhanced Global-Local Aggregation for Video Object Detection

Memory Enhanced Global-Local Aggregation for Video Object Detection0、Paper&Code:论文链接:https://arxiv.org/abs/2003.120632020 CVPR代码链接:https://github.com/Scalsol/mega.pytorch1、概述在视频物体检测任务中,由于相机失焦、物体遮挡等问题,仅基于图像的目标检测器很可能达不到令人满意的效果。针对此类问题,微软亚洲研究院提出了基于记忆

2020-11-03 17:10:13 3052 9

原创 「人脸检测系列」工程里最好用的RetinaFace以及ECCV2020 新开源的MGCNet人脸遮挡重构

前言:应之前关注博客的朋友留言,“有没有更详细点的MGCNet”。MGCNet,自监督单眼三维人脸基于遮挡感知的多视点几何一致性重建。自监督,我想起了去年的RetinaFace,RetinaFace 取得成功很大因素是运用了很多监督信息和自监督信息。虽然有点天马行空,但我还是觉得可以扩展地水写字出来的,概述下工程上应用较多表现SOTA的RetinaFace以及ECCV里的MGCNet一、RetinaFace0. Paper and CodeRetinaFace: Single-stage Dens

2020-10-21 14:09:33 2036 3

原创 【最全激活函数系列】读Paper概述近年常用深度学习神经网络激活函数

激活函数大概述1 前言:平常深度模型训练或使用中,往往就是1个API,比如,torch.nn.Tanh 就把激活函数调用了,今天做个整理分享,有些地方不一定很严谨,有错误烦请留言指正,这大篇的就当杂文概述吧2 为什么需要激活函数?2.1 概念层:如果我们不应用激活函数的话,则输出信号将仅仅是一个简单的线性函数。线性函数一个一级多项式。现如今,线性方程是很容易解决的,但是它们的复杂性有限,并且从数据中学习复杂数据映射功能的能力更小。一个没有激活函数的神经网络将只不过是一个线性回归模型(Linear

2020-10-21 09:19:10 2064

原创 运动目标追踪小结笔记【1】

运动目标追踪小结笔记【1】一、Struck论文:Structured Output Tracking with Kernels(2011 ICCV)这算比较早期了, 在arXiv里都没见到收录。具体看原文的朋友,可以去这个链接https://xueshu.baidu.com/usercenter/paper/show?paperid=309cfc4386e31d5864fe0460b73f0e41概述:此文是Sam Hare, Amir Saffari, Philip H. S. Torr等

2020-10-10 14:05:00 1872

原创 IEEE Access投稿步骤及投稿经验

一、投稿步骤1、打开网址:https://mc.manuscriptcentral.com/ieee-access,点击create An Account 创建一个账户2、点击login in,先进行登录,登陆进去后注意下面Keywords得Add3、点击author进行提交稿件4、就开始稿件的提交(1)选择期刊类型,填写论文题目,摘要等(2)上传文章及作者的信息(3)选择关键词和领域(4)直接跳转下一步(5)给编辑的信和作者信息等二、LetPub上对期刊的介绍:http://ww

2020-10-09 12:13:44 3670 7

原创 目标检测20年大总结--根据源Paper盘点2000年到2020年【1】概览

目标检测–2000年到2020年大总结【1】概览0、前言:目标检测应用范围非常广,例如,行人检测、车辆检测、卫星遥感对地监测、无人驾驶、交通安全等等领域。目前,基于深度学习的目标检测已经取得了很多重要成果,但同时也面临着诸多挑战,例如目标背景的多样性,动态场景的不断变化,对检测系统时效性和稳定性的要求也在逐渐提高。无论是在检测算法方面,还是硬件加速方面,目标检测都存在着许多难点和挑战,等待着我们去进一步突破。本系列文章,计划较详细的对目标检测算法在时间纵向里进行较为全面的梳理。以源论文为基础尽量较详细

2020-08-31 14:58:01 3028

原创 C 语言内存管理【基于GPU加速的CUDA编程系列--8】

C 语言内存管理、动态分配内存、野指针前言:程序员们编写内存管理程序时,往往提心吊胆。如果不想触雷,唯一的解决办法就是发现所有潜伏的地雷并且排除它们,躲是躲不了的,除非你转型写JAVA等自动内存管理的语言。而内存管理一定要正确使用指针,不会正确使用指针,肯定算不上是合格的程序员,建议养成使用“调试器逐步跟踪程序”的习惯,这样会让你真进步。1.内存分区C源代码经过预处理、编译、汇编和链接4步生成一个可执行程序。程序在没有运行之前,即没有被加载到内存前,可执行程序内部已经分好3段信息,分别是代码区(t

2020-11-20 16:23:43 948

原创 解决:ubuntu18里安装卸载虚拟机 VMware 15 及win7虚拟机屏幕无法全屏、复制黏贴交互

解决:ubuntu18里安装卸载虚拟机 VMware 15 及win7虚拟机屏幕无法全屏、复制黏贴交互文章目录解决:ubuntu18里安装卸载虚拟机 VMware 15 及win7虚拟机屏幕无法全屏、复制黏贴交互@[toc]1 虚拟机下载2 许可证3、卸载残留4、安装4.14.24.34.45、虚拟机里安装win75.1 注意5.2 注意1 虚拟机下载下载地址:https://download3.vmware.com/software/wkst/file/VMware-workstation-full

2020-11-20 10:56:13 1053

原创 C递归、可变参数、命令行参数【基于GPU加速的CUDA编程系列--7】

C递归、可变参数、命令行参数【基于GPU加速的CUDA编程系列--7】文章目录C递归、可变参数、命令行参数【基于GPU加速的CUDA编程系列--7】1C递归1.1 数的阶乘1.2 斐波那契数列2 C 可变参数3 命令行参数3.1 代码示例3.2 命令编译:3.3 输出结果:3.4 TIPS3.4.13.4.23.4.33.4.41C递归递归指的是在函数的定义中使用函数自身的方法。1.1 数的阶乘#include <stdio.h> double factorial(unsigne

2020-11-19 13:45:57 992 2

原创 C预处理器、头文件、错误处理【基于GPU加速的CUDA编程系列--6】

C预处理器、头文件、错误处理【基于GPU加速的CUDA编程系列--6】文章目录C预处理器、头文件、错误处理【基于GPU加速的CUDA编程系列--6】1 C 预处理器1.1 预处理器实例1.2 预定义宏1.3 预处理器运算符1.3.1 宏延续运算符(\)1.3.2 字符串常量化运算符(#)1.3.3 标记粘贴运算符(##)1.3.4 defined() 运算符1.3.5 参数化的宏2 头文件2.1 引用头文件的语法2.2 引用头文件的操作2.3 只引用一次头文件2.4 有条件引用2.5 tips3 错误处理

2020-11-17 15:42:37 1141

原创 C结构体、位域、共同体【基于GPU加速的CUDA编程系列--5】

C结构体、位域、共同体文章目录C结构体、位域、共同体1 结构体1.1 定义结构1.2 结构体变量的初始化1.3 访问结构成员1.4 结构作为函数参数1.5 指向结构的指针2 位域2.0 位、字节的换算2.1 位域的定义2.2 结构2.3 几点说明2.4 位域的使用3 共用体3.1 定义共用体3.2 访问共用体成员1 结构体C 数组允许定义可存储相同类型数据项的变量,结构却是可以存储不同类型的数据项。1.1 定义结构为了定义结构,您必须使用 struct 语句。struct 语句定义了一个包含多个成

2020-11-16 14:51:11 1132

原创 成功解决:pip安装包复制、安装到离线服务器里

成功解决:pip安装包-复制、安装到离线服务器里pip安装apt安装前言:1台有网的ubuntu18计算机,目标是把一些pip依赖包,安装到离线服务器里,怎么办?1 pwd~/.conda/envs/building/lib/python3.6/site-packages2 解决方案1.新建site-packages目录,进入到site-packages目录下;pip list 显示当前python环境的所有安装包2.在site-packages目录下执行:pip freeze &

2020-11-16 14:45:08 452

原创 指针、函数指针和回调函数【基于GPU加速的CUDA编程系列--4】

指针、函数指针和回调函数1.1 什么是指针我们都知道, 指针是一个变量,其值为另一个变量的地址,即,内存位置的直接地址。1.2 如何使用指针?使用指针时会频繁进行以下几个操作:定义一个指针变量、把变量地址赋值给指针、访问指针变量中可用地址的值。前面1节对指针进行了大概介绍,这篇对其扩展.1.3 NULL 指针在变量声明的时候,如果没有确切的地址可以赋值,为指针变量赋一个 NULL 值是一个良好的编程习惯。赋为 NULL 值的指针被称为空指针。NULL 指针是一个定义在标准库中的值为零的

2020-11-13 12:14:54 1190

原创 C语言的运算、判断和循环【基于GPU加速的CUDA编程系列--3】

运算、判断、循环1 运算符运算符是一种告诉编译器执行特定的数学或逻辑操作的符号。C 语言内置了丰富的运算符,并提供了以下类型的运算符:算术运算符关系运算符逻辑运算符位运算符赋值运算符杂项运算符本章将逐一介绍算术运算符、关系运算符、逻辑运算符、位运算符、赋值运算符和其他运算符。1.1 算数运算运算符描述实例+把两个操作数相加A + B 将得到 30-从第一个操作数中减去第二个操作数A - B 将得到 -10*把两个操作数相乘A * B 将

2020-11-12 11:05:04 1304

原创 C变量、常量、存储类【基于GPU加速的CUDA编程系列--2】

文章目录1 基本类型的变量:2 其他类型的变量,比如枚举、指针、数组、结构体、共用体2.1 枚举2.2 指针2.2.1 什么是指针?2.2.2 如何使用指针?2.3 数组2.3.1 声明数组2.3.2 初始化数组2.3.3 访问数组元素2.4 结构体2.4.1 定义结构2.4.2 结构体变量的初始化2.4.3 访问结构成员2.5 共用体2.5.1 定义共用体2.5.2 访问共用体成员3 常量3.1 整数常量3.2 浮点常量3.3 字符常量3.4 字符串常量3.5 定义常量3.5.1 define 预处理器

2020-11-11 11:07:47 1366

原创 Hello C 及数据类型【基于GPU加速的CUDA编程系列--1】

第一章 C语言重点回顾文章目录第一章 C语言重点回顾1 Hello C1.1 程序示例1.2 编译 & 执行2 数据类型2.1 基本类型(整数、浮点)2.1.1 32位及64位的注意2.1.2 实例2.1.3 浮点类型2.2.4 实例2.2 枚举类型2.2.1 枚举语法2.2.2 枚举应用1、循环遍历2、枚举在 switch 中的使用:2.3 void类型2.4 派生类型1 Hello C1.1 程序示例#include <stdio.h> int main(){ /

2020-11-10 14:50:58 1350

原创 图像金字塔、特征图像金字塔、FPN、FPT【图像处理系列__三】

3、FPN1、论文前言:SPPNet证明了这种基于区域的检测器可以更有效地应用于在单个图像尺度上提取的特征地图。接着不久,Fast R-CNN和Faster R-CNN提倡使用从单一尺度计算的特征,因为它在精度和速度之间提供了很好的折衷。但是,多尺度检测仍然表现得更好,特别是在对于小目标检测方面。然后就有了,作者这篇,关于多尺度的object detection的算法:FPN(feature pyramid networks)。2、论文概述:原来多数的object detection算法都是只采

2020-11-05 11:18:25 1502

原创 Pytorch自动求导机制、自定义激活函数和梯度以及一些tips【深入Pytorch框架系列--2】

Pytorch自动求导机制、自定义激活函数和梯度前言:由于pytorch框架只是提供了正向传播的机制,模块中的参数的梯度是通过自动求导推倒出来的,当我们需要自定义某一个针对张量的一些列操作时候就部够用了。1 自动求导机制Pytorch会根据计算过程来自动生成动态计算图,然后可以根据动态图的创建过程进行反向传播,计算得到每个节点的梯度直。1.0 张量本身grad_fn为了能记录张量的梯度,首先需要在张量创建的时候设置 requires_grad =True.对于pytorch来说,每一个张量都有

2020-11-02 18:21:52 1620

原创 图像金字塔、特征图像金字塔、FPN、FPT【图像处理系列__二】

2、特征图像金字塔2.1 Featurized image pyramid它是指在图像金字塔基础上构建的特征金字塔(featurized image pyramids ),这是传统解决多尺度目标检测时候的一个思路,具有一定意义的尺度不变性。直观上看,这种特性使得模型可以检测大范围尺度的图像。图(a)使用图像金字塔建立特征金字塔,每个独立的图像尺度上计算特征,这计算特别缓慢2.2 概述Featurized image pyramids 主要在人工特征中使用,比如DPM就要用到它产生密集尺度的样本以

2020-11-02 16:26:20 2236 4

原创 图像金字塔、特征图像金字塔、FPN、FPT【图像处理系列一】

前言:前短时间有关注我水文的朋友,想要一篇关于FPT较详细点的水文,有了题目,那就水个系列交卷吧1 图像金字塔1.1 定义:图像金字塔是图像多尺度表达的一种,是一种以多分辨率来解释图像的有效但概念简单的结构。一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低,且来源于同一张原始图的图像集合。其通过梯次向下采样获得,直到达到某个终止条件才停止采样。我们将一层一层的图像比喻成金字塔,层级越高,则图像越小,分辨率越低。通常有两种类型的图像金字塔. 高斯金字塔(Gaussian pyramid):

2020-11-02 15:18:17 1677

原创 Pytorch框架里的并行机制、优缺点以及一些tips【Pytorch框架系列--1】

0 前言:在很多时候,数据集很大,单卡单节点不能满足我们的工程工作。这个时候我们需要考虑多卡多机器上运行模型的张量并行化运算。1 模型并行Model Parallel将模型的计算图放入不同的计算节点,然后不同的节点并行计算图的不同的部分。优点:较容易容纳大模型,把很大的模型,分散置于不同节点了。缺点:并行计算较复杂,因为需要考虑如何有效控制数据在不同的节点的计算顺序,有条不紊的高速计算保证计算资源的利用率。2 数据并行Data Parallel每个节点有一个计算图,在不同的节点输入不同迷你

2020-10-28 11:09:07 1667

原创 Linux:解决centos-root 根目录磁盘空间不足 OSSBrower “no space left on“ ,不删数据扩容解决步骤

Linux:解决centos-root 根目录磁盘空间不足,不删数据扩容解决步骤前言:服务器磁盘又满了,现在硬盘这么便宜还能满,主要是默认安装的root区只有50G啊,巴拉巴拉,又不能停再跑的业务,其实也很简单,小手术重新挂载分配就好了1、临时删除式查看哪个目录占用过高,删除相应文件du -h -x --max-depth=12、不删除数据1、查看df -h (centos-home和centos-root每人的名字可能不一样)2.备份home分区文件tar cvf /tmp/ho

2020-10-21 16:21:42 2139

原创 OCR深度实践笔记「1」

OCR深度实践笔记1、OCR技术概览1.1 传统OCR方法的一般流程1.2 深度学习的OCR:1.2.1 文本检测在深度学习之前,文字检测主要还是以手动提取特征为主,较经典的方法主要是SWT.MSER,HOG等。传统的方式是先对图像设置特征金字塔,然后使用滑动窗口进行扫描,之后进入手动提取特征阶段。再通过滑动床港口提取分类,最后汇总位文本区域。深度学习后,基于目标检测框架体系内,文本检测大概有这么几类方法:1」 基于候选框(anchor)首先预生成若干候选框,然后回归坐标和分类,最后

2020-09-14 22:02:43 1984 1

原创 深度学习全栈算法工程师【3】自制docker里面测试Retinanet

自制docker里面测试retinanet1、镜像打包镜像保存加载1、docker save -o gitlab.tar docker.io/twang2218/gitlab-ce-zh:latestdocker load -i gitlab.tar镜像保存加载2、docker export -o panbov3.tar elastic_bhaskaradocker import panbov3.tar查看镜像docker images运行容器docker run ---

2020-09-14 16:41:07 1595

原创 目标检测20年大总结--根据源Paper盘点2000年到2020年【3】传统目标检测2

3传统目标检测「2」本节对几个传统目标检测器做些异同比较,以及展开整理下DPM检测器3.1 基本流程3.2 V-JVJ时代里,典型的就是,使用Haar特征Adaboost算子来检测了Haar+Adaboost+CascadeCascade级联思想可以快速抛弃没有目标的平滑窗(sliding window),因而大大提高了检测效率。但它有一个很大的缺点,它仅仅使用了很弱的特征,用它做分类的检测器也是弱分类器,仅仅比随机猜的要好一些,它的精度靠的是多个弱分类器来实行一票否决式推举(就是大家都检测是

2020-09-08 16:54:00 1354

原创 目标检测20年大总结--根据源Paper盘点2000年到2020年【2】传统目标检测1

传统探测器如果我们把今天的物体探测看作是在深度学习的计算暴力下的技术美学,那么时光倒流20年,我们将见证“冷武器时代的智慧”。大多数早期的目标检测算法都是基于手工制作的功能构建的。由于当时缺乏有效的图像表示,人们不得不设计复杂的特征表示,并采用各种加速技术来耗尽有限的计算资源。V-J探测器论文:1、P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” in Comput

2020-09-08 15:53:37 1561

原创 深度学习全栈算法工程师【2】Docker 从头到尾、简明实操

前言:紧接上文,docker-ce 环境已经部署好了。现在需要定制我们自己的Docker,用来训练或者上线生产。1.1查找所有容器docker ps -a找出我们想要的容器名字1.2 查找容器长IDdocker inspect -f ‘{{.ID}}’ python1.3 拷贝本地文件到容器docker cp 本地路径 容器长ID:容器路径docker cp /home/irwin/vmware/share_file/files/suanlidemo.zip fe9f7d693f7bc17

2020-09-07 18:28:58 1554

原创 VOC-XML2TXT格式、ALL2COCO-JSON格式、制作自己的训练数据集

数据制作1、check_img及xmlimport cv2import osimport shutildef check_img(img_path): imgs = os.listdir(img_path) for img in imgs: if img.split(".")[-1] !="jpg": print(img) shutil.move(img_path+"/"+img,"./error/"+img)d

2020-09-02 18:44:51 1555

转载 Ubuntu1804安装byzanz截取动态效果图工具

参考:Ubuntu 16.10 安装byzanz截取动态效果图工具https://www.cnblogs.com/wghao/p/6011195.html

2020-08-27 16:32:03 47

原创 ubuntu18环境YOLOV5训练自己的数据集(VOC格式、OCO格式、数据集权重百度云下载)以及YOLOV5结构讲解

ubuntu18环境使用yolov5训练自己的VOC格式、COCO格式(数据集权重百度云下载)以及YOLOV5讲解前言:yolov5简直是又快又好,上手使用也很友好。1、RequirementsPython 3.8 or later with all requirements.txt dependencies installed, including torch>=1.6. To install run:$ pip install -r requirements.txt2、测试权重百度

2020-08-26 17:37:35 1131 6

原创 主机ubuntu1804虚拟机win7_64,2个方案解决不能互相复制问题

1、主机ubuntu18, 虚拟win7_64,解决不能互相复制问题前言:网上很多都是win10作为主机,Ubuntu作为虚拟机。巧了,今天介绍的恰恰相反,本机主机是ubuntu18,虚拟机win7_64位。但其实原理上是一致的,操作记录如下:问题:从win7里复制文件到ubuntu,死活复制不上解决:方案1、重装VMware Tools:登录虚拟机;点击菜单“虚拟机”-“重装VMware Tools";如图上图。点击重装之后,选择对应的setup32\64,选择“完整安装”;根据向

2020-08-26 10:42:41 1553

原创 【人脸识别】2篇有关运动模糊人脸地标及人脸标注边界方面的Paper

2篇有关运动模糊人脸地标与标注及人脸标注边界方面的Paper前言:2篇Paper都是清华大学TNList发表的,有关人脸标定方面的佳作,也给出了开源代码,表现SOTA!作人脸方面的CVer朋友值得一看。数据集下载:参考https://blog.csdn.net/u014090429/article/details/102853647Paper1:[CVPR 2018] Look at Boundary: A Boundary-Aware Face Alignment Algorithmhtt

2020-08-24 17:13:20 555

原创 Django-MyBlog实测干货[2]:Centos-Mysql安装配置及卸载

Mysql安装及配置1、安装及配置wget http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpmrpm -ivh mysql-community-release-el7-5.noarch.rpmyum install mysql-community-serverpip3 install PyMySQL#2.重启服务service mysqld restart#3. 设置bind-ip vim /etc

2020-08-23 23:42:32 592 1

all2cocoJson (1).py

数据集标签的voc格式转coco格式、xml格式转json格式,csv格式转json格式,txt格式转json格式,万能格式转coco格式工具,很具有实际意义开箱即用。description='Transform other dataset format into coco format‘

2020-06-28

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除