时间:2020-10-12
题目地址:https://leetcode-cn.com/problems/balanced-binary-tree/
题目难度:Easy
题目描述:
给定一个二叉树,判断它是否是高度平衡的二叉树。
本题中,一棵高度平衡二叉树定义为:
一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1。
示例 1:
给定二叉树 [3,9,20,null,null,15,7]
3
/ \
9 20
/ \
15 7
返回 true 。
示例 2:
给定二叉树 [1,2,2,3,3,null,null,4,4]
1
/ \
2 2
/ \
3 3
/ \
4 4
返回 false 。
思路1:从顶至底(暴力法)
借用104的https://blog.csdn.net/isabloomingtree/article/details/106135722
构造一个获取当前节点最大深度的方法 depth(root) ,通过比较此子树的左右子树的最大高度差abs(depth(root.left) - depth(root.right)),来判断此子树是否是二叉平衡树。若树的所有子树都平衡时,此树才平衡。
一开始没有递归没有子树,只遍历了根节点的左右子树
代码段1:通过
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def maxDepth(self, root: TreeNode) -> int:
if root == None:
return 0
else:
left_depth = self.maxDepth(root.left)
right_depth = self.maxDepth(root.right)
return max(left_depth, right_depth) + 1
def isBalanced(self, root: TreeNode) -> bool:
if not root:
return True
if root:
left_depth = self.maxDepth(root.left)
right_depth = self.maxDepth(root.right)
#print(left_depth,right_depth)
if abs((left_depth + 1) - (right_depth + 1 )) > 1:
return False
#print(self.isBalanced(root.left),self.isBalanced(root.right))
return self.isBalanced(root.left) and self.isBalanced(root.right)
总结:
- 自己写的有点乱且繁琐,看下大佬优化的
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def maxDepth(self, root: TreeNode) -> int:
if root == None:
return 0
return max(self.maxDepth(root.left), self.maxDepth(root.right)) + 1
def isBalanced(self, root: TreeNode) -> bool:
if not root:
return True
return abs(self.maxDepth(root.left) - self.maxDepth(root.right)) <= 1 and self.isBalanced(root.left) and self.isBalanced(root.right)
思路2:从底至顶(提前阻断)
此方法为本题的最优解法,但“从底至顶”的思路不易第一时间想到。
思路是对二叉树做先序遍历,从底至顶返回子树最大高度,若判定某子树不是平衡树则 “剪枝” ,直接向上返回。
算法流程:
recur(root):
递归返回值:
当节点root 左 / 右子树的高度差 < 2<2 :则返回以节点root为根节点的子树的最大高度,即节点 root 的左右子树中最大高度加 11 ( max(left, right) + 1 );
当节点root 左 / 右子树的高度差 \geq 2≥2 :则返回 -1−1 ,代表 此子树不是平衡树 。
递归终止条件:
当越过叶子节点时,返回高度 00 ;
当左(右)子树高度 left== -1 时,代表此子树的 左(右)子树 不是平衡树,因此直接返回 -1−1 ;
isBalanced(root) :
返回值: 若 recur(root) != 1 ,则说明此树平衡,返回 truetrue ; 否则返回 falsefalse 。
复杂度分析:
时间复杂度 O(N)O(N): NN 为树的节点数;最差情况下,需要递归遍历树的所有节点。
空间复杂度 O(N)O(N): 最差情况下(树退化为链表时),系统递归需要使用 O(N)O(N) 的栈空间。
代码段2:通过
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isBalanced(self, root: TreeNode) -> int:
return self.recur(root) != -1
def recur(self, root: TreeNode) -> bool:
if not root:
return 0
left = self.recur(root.left)
if left == -1: return -1
right = self.recur(root.right)
if right == -1: return -1
return max(left, right) + 1 if abs(left - right) < 2 else -1
总结:
- 这个简直厉害了