机器学习复习🤖
文章平均质量分 91
南林今年第一次开本课,应付本科阶段机器学习!
isxhyeah
满山猿猴,我腚最红耶!!!
展开
-
机器学习复习(下)
经验误差指的是模型在训练数据集上的误差,而泛化误差则是模型在新数据上的误差。在训练过程中,我们通常会使用训练数据集来拟合模型,并通过经验误差来评估模型的拟合效果,希望能够得到一个具有较低经验误差的模型。但是,这并不一定意味着模型能够在新数据上表现得好,因为模型可能会出现过拟合的情况。/*过拟合指的是模型在训练集上表现非常好,但是在测试集上表现较差的情况。当模型过于关注训练集中的噪声或个别样本时,就容易导致模型出现过拟合的问题,这时模型的泛化能力就会受到影响,泛化误差就会变大。原创 2023-06-12 20:52:48 · 1999 阅读 · 0 评论 -
机器学习复习(上)
预剪枝和后剪枝都是决策树中用来避免过拟合的技术,它们的主要区别在于剪枝的时间。预剪枝是在生成决策树的过程中,在每个节点进行划分前,先通过计算信息增益或其他指标评估该节点是否需要进一步划分。如果该节点不满足预先设定的条件,那么就停止划分,将当前节点标记为叶子节点。预剪枝优点在于节省了决策树的构建时间,同时降低了过拟合的风险。但如果预先设定的条件不够准确,就容易出现欠拟合的情况。后剪枝是在生成完整的决策树之后,再对决策树进行剪枝。原创 2023-06-10 00:10:26 · 1698 阅读 · 4 评论