场景设定
在某大型互联网公司的运维团队面试室,面试官要求候选人模拟一个真实的生产环境故障处理场景。候选人需要通过Prometheus和Grafana快速诊断系统CPU使用率飙升至100%的问题,并提出解决方案。
面试过程
第一轮:问题描述
面试官:假设你接到一个紧急任务,生产环境的某台服务器CPU使用率突然飙升至100%,导致服务响应时间急剧增加,已经影响到业务正常运行。你有15分钟的时间,利用Prometheus和Grafana进行诊断,找出问题并提出解决方案。你会怎么操作?
候选人:好的,让我捋一下思路。首先,我需要登录Grafana,看看Prometheus采集到的监控数据。我大概知道Prometheus会采集诸如CPU使用率、内存使用率、进程信息等指标,Grafana可以直观地展示这些数据。
第二轮:初步排查
候选人:我先在Grafana中创建一个仪表盘,添加几个关键的监控面板:
- CPU使用率:直接看
node_cpu
指标,看看负载分布情况。 - 进程使用情况:查看
node_procstat
,看看哪些进程占用CPU最多。 - 内存使用率:虽然题目没提到内存,但我也想确认一下是否有内存泄漏导致CPU飙升。
- 磁盘I/O:检查
node_disk_io_time
,看看是否有磁盘读写异常。
接下来,我打开Prometheus的查询界面,直接写几个PromQL查询:
sum(rate(node_cpu{mode="system"}[5m]))
:系统级CPU使用率。sum(rate(node_cpu{mode="user"}[5m]))
:用户级CPU使用率。topk(5, sum(rate(node_cpu{mode="user"}[5m])) by (instance))
:找出占用CPU最多的实例。
第三轮:定位问题
候选人:根据Prometheus和Grafana的数据,我发现以下几个异常:
- CPU使用率飙升至100%:
node_cpu{mode="user"}
的值一直在1.0(即100%)。 - 进程占用:通过
node_procstat
发现一个名为python
的进程(PID为12345)占用CPU高达95%,怀疑是某个Python服务异常。 - 内存使用:
node_memory
指标显示内存使用率为80%,但没有明显泄漏迹象。 - 磁盘I/O:
node_disk_io_time
正常,排除磁盘读写问题。
下一步,我想通过Prometheus的node_procs_stat
指标,进一步检查这个Python进程的cpu_usage
和mem_usage
,确认它是否在进行大量计算或死循环。
第四轮:提出解决方案
候选人:基于以上排查,我怀疑是某个Python服务的某个任务进入了死循环,导致CPU占用过高。我建议以下解决方案:
- 紧急降级:立即停止异常的Python服务,使用备用服务接管流量,避免生产环境进一步恶化。
- 日志分析:查看Python服务的日志,确认是否有异常任务或死循环的迹象。
- 代码审查:针对可疑的任务,审查相关代码,特别是多线程或多进程部分,检查是否有资源竞争或死锁问题。
- 性能优化:如果任务确实是计算密集型,考虑优化算法或使用异步处理(如
asyncio
或multiprocessing
)。 - 监控告警:在Prometheus中新增告警规则,当某个进程的CPU使用率超过80%时触发告警,提前发现问题。
结束面试
面试官:你的思路很清晰,但在实际操作中,你提到的日志分析和代码审查部分需要更具体。比如,如何快速定位Python服务中的死循环或性能瓶颈?另外,Prometheus的告警规则设置是否考虑过误报问题?
候选人:感谢指正!日志分析时,我会重点关注错误日志和INFO级别的任务日志,特别是与CPU占用相关的任务。至于代码审查,我会优先检查for
循环、while
循环和递归函数,确保没有无限制的迭代。至于Prometheus告警规则,我会设置合理的阈值(如80%持续5分钟),并结合process_start_time_seconds
排除新启动的进程。
面试官:好的,你的回答整体不错,但还需要更多实践经验来完善。今天的面试就到这里,谢谢!
候选人:谢谢您的指导!我会继续学习Prometheus和Grafana的高级用法,争取下次表现更好!
(面试官点头,结束面试)