场景设定
在一间昏暗的面试室里,终面即将结束,时间只剩下最后5分钟。候选人小明正站在白板前,准备展示如何用 trio
解决一个复杂的回调地狱问题。P9 考官坐在桌子旁,表情凝重,手中握着一杯咖啡,显然对候选人的表现充满期待。
第一轮:问题提出
考官:小明,我们最后一个问题。假设你有一个复杂的异步任务链条,每个任务都需要等待前一个任务完成,最终结果需要层层回调。请用 asyncio
解决这个问题。
小明:(自信满满地走到白板前)好的!不过我有个更优雅的解决方案。与其用 asyncio
,不如直接用 trio
!trio
是一个结构化的并发库,专门用来解决这种回调地狱的问题。
考官:哦?听起来挺有趣的。那你说说看,trio
和 asyncio
有什么区别?
第二轮:trio
解决方案
小明:(在白板上写下代码)
import trio
async def task_a():
print("Task A is running")
await trio.sleep(1)
return "Result from A"
async def task_b(result_a):
print(f"Task B received result: {result_a}")
await trio.sleep(1)
return "Result from B"
async def task_c(result_b):
print(f"Task C received result: {result_b}")
await trio.sleep(1)
return "Final result"
async def main():
async with trio.open_nursery() as nursery:
result_a = await task_a()
result_b = await task_b(result_a)
final_result = await task_c(result_b)
print(f"All tasks completed. Final result: {final_result}")
trio.run(main)
小明:你看,trio
的 nursery
机制可以让我们优雅地管理并发任务,而且代码结构清晰,完全没有回调嵌套的问题。asyncio
虽然也可以实现类似的功能,但通常需要手动管理事件循环和任务链,代码会变得很混乱。
考官:(微微点头)嗯,代码确实看起来更简洁。但你提到性能问题,trio
和 asyncio
在性能上有什么差异?
第三轮:性能对比
小明:(迅速切换到笔记本电脑,敲代码)
import asyncio
import trio
import time
async def async_task(n):
await asyncio.sleep(n)
return n
async def trio_task(n):
await trio.sleep(n)
return n
# asyncio 测试
async def asyncio_test():
start = time.time()
tasks = [async_task(i) for i in range(1, 6)]
results = await asyncio.gather(*tasks)
print(f"Asyncio total time: {time.time() - start} seconds")
return results
# trio 测试
async def trio_test():
start = time.time()
async with trio.open_nursery() as nursery:
results = []
for i in range(1, 6):
result = await trio_task(i)
results.append(result)
print(f"Trio total time: {time.time() - start} seconds")
return results
# 实际对比
asyncio.run(asyncio_test())
trio.run(trio_test())
小明:(看着屏幕上的输出)根据我的测试,trio
的性能和 asyncio
差不多,甚至在某些场景下会稍微快一些。这是因为 trio
的事件循环实现更精简,同时 trio
的 nursery
机制减少了手动管理任务的开销。
考官:(皱眉)那你能不能解释一下,为什么 trio
的性能会更好?
第四轮:深入讨论
小明:(激动地继续解释)嗯……其实 trio
的性能优势主要体现在两个方面:
- 事件循环实现:
trio
的事件循环是用纯 Python 实现的,比asyncio
的 C 实现更灵活,但性能上几乎打平。 - 结构化并发:
trio
的nursery
和scope
机制减少了手动管理任务的复杂度,降低了错误风险,同时在某些场景下减少了上下文切换的开销。
考官:(打断)等等,你说 trio
的事件循环是纯 Python 实现的,那它的性能怎么还能和 asyncio
打平?你确定你的测试结果可靠吗?
第五轮:尴尬收场
小明:(慌乱地翻笔记本)嗯……其实我刚才的测试可能有点问题……我用的测试场景太简单了,可能没有体现出性能差异。实际上,asyncio
在某些场景下(比如高并发)表现更好,因为它的事件循环是用 C 实现的。
考官:(微微一笑)看来你对 trio
和 asyncio
的性能对比还需要更深入的研究。不过你提出的用 trio
解决回调地狱的想法倒是很有创意。时间到了,今天的面试就到这里吧。
小明:(沮丧地收拾东西)啊?就……就这样结束了?那我还能不能有机会解释一下如何用 asyncio
煮方便面呢?
(考官摇头,结束了面试)