终面倒计时10分钟:候选人用asyncio协程池优化高并发任务调度

场景设定

在终面的最后10分钟,面试官提出了一个高并发任务调度的优化问题,要求候选人使用asyncio协程池来优化任务调度,同时兼顾任务优先级和资源限制。候选人需要快速实现代码,并解释协程池的工作原理及与传统线程池的差异。


面试流程

第一轮:问题陈述

面试官:小王,最后一个问题。我们有一个高并发任务调度系统,目前任务堆积严重。现在要求你使用asyncio协程池来优化这个系统,同时需要支持任务优先级和资源限制。你需要在10分钟内完成代码实现,并解释协程池的工作原理以及它与传统线程池的差异。

候选人:好的,我理解了!我会用asyncioasyncio.Semaphore限制并发数量,用优先级队列管理任务,再结合asyncio.create_task来提交任务。我先用asyncio.Queue来实现任务队列,然后用asyncio.Semaphore来控制并发任务数。


第二轮:代码实现

候选人:(开始编码)

import asyncio
import heapq
from collections import deque
from functools import partial

# 任务优先级队列
class PriorityTaskQueue:
    def __init__(self):
        self.tasks = []
        self.counter = 0  # 用于解决优先级相同时的比较问题

    def put(self, task, priority=0):
        heapq.heappush(self.tasks, (priority, self.counter, task))
        self.counter += 1

    def get(self):
        return heapq.heappop(self.tasks)[-1]

    def empty(self):
        return len(self.tasks) == 0

# 协程任务调度器
class CoroutineTaskScheduler:
    def __init__(self, max_concurrency=10):
        self.task_queue = PriorityTaskQueue()
        self.semaphore = asyncio.Semaphore(max_concurrency)
        self.tasks = set()

    async def submit_task(self, coroutine, priority=0):
        # 将任务放入优先级队列
        self.task_queue.put(coroutine, priority)

        # 等待信号量许可
        async with self.semaphore:
            # 提交任务并跟踪
            task = asyncio.create_task(coroutine)
            self.tasks.add(task)
            task.add_done_callback(partial(self._remove_task, task))
            await task

    def _remove_task(self, task, fut):
        self.tasks.remove(task)

    async def run(self):
        while not self.task_queue.empty():
            # 获取优先级最高的任务
            task = self.task_queue.get()
            await self.submit_task(task)

# 示例任务
async def example_task(name, delay):
    print(f"Task {name} started.")
    await asyncio.sleep(delay)
    print(f"Task {name} completed.")

# 主程序
async def main():
    scheduler = CoroutineTaskScheduler(max_concurrency=3)

    # 提交任务
    await scheduler.submit_task(example_task("A", 2), priority=1)
    await scheduler.submit_task(example_task("B", 3), priority=2)
    await scheduler.submit_task(example_task("C", 1), priority=0)
    await scheduler.submit_task(example_task("D", 4), priority=1)

    # 启动调度器
    await scheduler.run()

# 运行主程序
asyncio.run(main())

第三轮:代码解释

候选人:我实现了两个主要部分:优先级队列和协程任务调度器。

  1. 优先级队列

    • 使用heapq实现了一个优先级队列,任务会被按照优先级(priority)排序。
    • 如果优先级相同,会通过counter字段来区分,确保排序的唯一性。
  2. 协程任务调度器

    • 使用asyncio.Semaphore来限制并发任务数,确保不会同时运行过多的协程。
    • 使用asyncio.create_task来提交协程任务,并通过add_done_callback来追踪任务的完成状态。
    • run方法会不断从优先级队列中取出任务,并通过信号量控制并发。
  3. 示例任务

    • 我用了一个简单的example_task函数来模拟任务,任务会有不同的优先级和延迟时间。

第四轮:协程池与线程池的差异

候选人:协程池和线程池的主要差异在于它们处理任务的方式不同:

  1. 线程池

    • 线程池使用真正的操作系统线程,每个线程都会占用独立的系统资源(如CPU和内存)。
    • 线程之间的切换需要操作系统调度,开销较大。
    • 线程池适合I/O密集型任务(如网络请求、文件读写),但也适合计算密集型任务。
  2. 协程池

    • 协程池基于asyncio事件循环,所有的任务都在一个线程中执行,通过协作式调度实现并发。
    • 协程之间的切换由解释器控制,开销非常小,适合I/O密集型任务。
    • 但由于是单线程模型,协程池不适合计算密集型任务,因为CPU密集的任务会阻塞事件循环。
  3. 任务调度

    • 线程池中的任务是并行执行的,多个线程可以同时运行。
    • 协程池中的任务是并发执行的,虽然在一个线程中,但通过await可以让出控制权,模拟出并发效果。
  4. 资源消耗

    • 线程池会消耗更多的系统资源,尤其是线程数较多时。
    • 协程池资源消耗极低,适合处理大量轻量级的I/O任务。

第五轮:面试官点评

面试官:你的实现思路很清晰,代码结构也不错。协程池的确适合I/O密集型任务,但需要注意不能用于CPU密集型任务,因为协程是单线程的,会被阻塞。你解释协程池与线程池的差异也很到位,说明你对异步编程的理解是深入的。

候选人:谢谢您的肯定!我也意识到协程池的局限性,如果任务中有CPU密集型操作,我会考虑结合线程池来解决。不过对于I/O密集型任务,协程池确实是一个高效的解决方案。

面试官:非常好,今天的面试就到这里了。我们会尽快给你答复,祝你一切顺利!

候选人:谢谢面试官!期待您的好消息!再见!

(面试官微笑着点头,结束面试)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值