数据分析-卷积神经网络-CNN

目录

前言

卷积神经网络

卷积

池化


前言

1959年,诺贝尔生理学或医学奖获得者David Hunter Hubel,Torsten Wiesel通过对猫的视觉的研究发现猫的神经元中的“感受野”概念。可视皮层是分级的,低级到高级存在多对一关系,V1 提取边缘,v2 识别形状或者目标部分......

卷积神经网络

卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的单元,对于大型图像处理有出色表现。与普通神经网络非常相似,它们都由具有可学习的权重和偏置常量(biases)的神经元组成。前馈全连接神经网络前后相接的神经元采用全连接,卷积神经网络的神经元采用部分连接。每个神经元都接收一些输入,并做一些点积计算,输出样本属于不同分类的概率。

 特点:

局部连接:每层神经元只和上一层部分神经元相连(卷积计算规则)。

权值共享:Filter 的权值对于上一层所有神经元都是一样的。

好处:

参数数量与上一层神经元个数无关

大幅减少神经网络参数数量

卷积神经网络通常包含卷积层、池化层、全连接层等。以下是典型的CNN-AlexNet

卷积

卷积神经网络上下层采用局部连接。

对于下图4*4的黑白图片,使用3*3的卷积核,步长为1,卷积操作过程:

图片中按顺序逐次(步长决定每次的移动大小)选3*3的区域(与卷积核等同大小),卷积核与对应的区域元素逐个相乘后求和放入输出特征中。得到如下结果

 

 对于如下3维的RGB彩色图片(7*7)。使用2个3*3*3的卷积核(每个卷积核提取图片不同的特征)。可输出两个3*3的图片。

卷积核的大小,步长等为超参数,卷积核的W为可训练参数,在训练过程中自动确定。

每个3*3*3卷积核的3个3*3的卷积核分别对应彩色图片的R、G、B。图像上每次选择3*3的大小的区域与卷积核点积求和,再按步长移动到下一个3*3的区域,点积求和,直到最后。

池化

通常有最大池化与平均池化两种。

最大池化选取对应区域的最大值作为输出值,池化时区域一般不重叠。卷积操作时区域一般会重。叠。

 平均池化选取对应区域的均值作为输出特征。

 池化同样也是部分连接。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ITLiu_JH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值