目录
前言
1959年,诺贝尔生理学或医学奖获得者David Hunter Hubel,Torsten Wiesel通过对猫的视觉的研究发现猫的神经元中的“感受野”概念。可视皮层是分级的,低级到高级存在多对一关系,V1 提取边缘,v2 识别形状或者目标部分......
卷积神经网络
卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的单元,对于大型图像处理有出色表现。与普通神经网络非常相似,它们都由具有可学习的权重和偏置常量(biases)的神经元组成。前馈全连接神经网络前后相接的神经元采用全连接,卷积神经网络的神经元采用部分连接。每个神经元都接收一些输入,并做一些点积计算,输出样本属于不同分类的概率。
特点:
局部连接:每层神经元只和上一层部分神经元相连(卷积计算规则)。
权值共享:Filter 的权值对于上一层所有神经元都是一样的。
好处:
参数数量与上一层神经元个数无关
大幅减少神经网络参数数量
卷积神经网络通常包含卷积层、池化层、全连接层等。以下是典型的CNN-AlexNet
卷积
卷积神经网络上下层采用局部连接。
对于下图4*4的黑白图片,使用3*3的卷积核,步长为1,卷积操作过程:
图片中按顺序逐次(步长决定每次的移动大小)选3*3的区域(与卷积核等同大小),卷积核与对应的区域元素逐个相乘后求和放入输出特征中。得到如下结果
对于如下3维的RGB彩色图片(7*7)。使用2个3*3*3的卷积核(每个卷积核提取图片不同的特征)。可输出两个3*3的图片。
卷积核的大小,步长等为超参数,卷积核的W为可训练参数,在训练过程中自动确定。
每个3*3*3卷积核的3个3*3的卷积核分别对应彩色图片的R、G、B。图像上每次选择3*3的大小的区域与卷积核点积求和,再按步长移动到下一个3*3的区域,点积求和,直到最后。
池化
通常有最大池化与平均池化两种。
最大池化选取对应区域的最大值作为输出值,池化时区域一般不重叠。卷积操作时区域一般会重。叠。
平均池化选取对应区域的均值作为输出特征。
池化同样也是部分连接。