CNN
不放糖的苦咖啡
本人现在从事深度学习技术以及Java web这方面的知识,希望和大家一起学习,资源共享,共同进步!!
为了自己的梦想,不断地进步,不断的努力,加油!
展开
-
Bert Model 训练遇到的问题描述
1. tokenizer.encode() 方法 与 tokenizer.tokenize() 之间的区别:(1) tokenizer.encode()返回其在字典中的id(2) tokenizer.tokenize() 返回 tokendef bert_(): model_name = 'bert-base-chinese' MODEL_PATH = 'F:/models/bert-base-chinese/' # a.通过词典导入分词器 tokenizer.原创 2021-11-04 14:54:59 · 1885 阅读 · 0 评论 -
深度学习中BP(Backpropagation)算法的工作流程
BP算法是CNN网络中很复杂、很关键的一个网络,希望能够帮助大家原创 2017-07-30 14:37:21 · 2264 阅读 · 0 评论 -
卷积神经网络网络篇
10大深度学习框架深度学习算法有多种多样化的模型组成,这是由于神经网络在构建一个完整的端到端的模型时所提供的灵活性。计算机视觉任务的类型1.定义:通过创建人工模型来由人类执行的视觉任务。其本质是人类的感知与观察是一个过程,它可在人工系统中被理解和实现。2.计算机视觉任务的主要类型: 1)物体识别/分类:在物体识别中,给出一张原始图像,你的任务就是识别出该图像属于哪个类别。 2)分类+定位翻译 2017-08-11 16:39:11 · 735 阅读 · 0 评论 -
MatConvNet 框架的mnist实例
mnist是一个手写数字库,由DL大牛YanLeCun进行维护.mnist最初备在美国被用与支票上手写数字识别,现在成了DeepLearning 的入门练习示例,针对mnist识别的神经网络的专门模型是Lenet,算是最 早的CNN模型了. 1---mnist数据的---训练样本为60000张 2-----------------测试样本为10000张 3-----------------每个样本为28*28大小的黑白图片4-----------------手写数字为0-9,因此分为10类 需要注意翻译 2017-07-27 16:42:35 · 1086 阅读 · 1 评论 -
OwnDesign
关于MatConvNet程序 — 识别车牌字符构造imdbs数据集代码如下:function imdb = makeimdb(datadir) % 函数名:makeimdb% 功能: 构建imdb,将数据转化为matlab可以识别的imdb.mat格式% 参数: 图片路径% 返回值:imdb.mat 可以在matlab 中可以使用的数据集%导入原始数据地址 % datadi原创 2017-08-12 15:02:15 · 408 阅读 · 0 评论 -
Faster RCNN 运行步骤
Caffe 框架环境搭建============Ubuntu14.04 + GPU + CUDA + cuDNN + OpenCVCUDA (compute Unified Device Architecture, 统一计算架构)是由NVIDIA所推出的一种集成技术。显卡的的类别 1) NVIDIA 2) AMD CPU 和 GPU 区别:CPU (Central Processing翻译 2017-10-10 11:28:17 · 4950 阅读 · 0 评论 -
Tensorflow 框架下的 调用 GPU 进行程序 实现
1. 检查显卡 GPU 使用情况 : # 查看GPU此时的使用情况 nvidia-smi # 实时返回GPU使用情况nvidia-smi -l2. 第一种是通过tf.device()函数来指定训练时所要使用的GPU: tf.device('/gpu:2') 3. 通过CUDA_VISIBLE_DEVICES来指定.同样使用第2块GPU来训练模型,我们可以在我们的python代码...原创 2018-04-01 11:13:38 · 4550 阅读 · 1 评论 -
FCN 全卷积网络
全卷积网络 Fully Convolutional NetworksCNN 通常CNN网络在卷积层之后会接上若干个全连接层,将卷积层产生的特征图(feature map)映射成一个固定长度的特征向量。 FCN 对图像进行像素级的分类,从而解决了语义级别的图像分割(semantic segmentation)问题,与经典的CNN 在卷积层之后使用全连接层得到固定长度的特征向量,...原创 2018-06-13 16:20:45 · 8573 阅读 · 0 评论