超火动态排序图:代码不到40行,手把手教你!


前言

最近,这种动态排序条形图视频超级火,如下图:

具体来说,这种图可以叫:Bar Chart Race,有什么国家GDP的、某某沉浮史等等,为了符合公众号的身份属性,我们为大家制作了这个较为简单的可视化视频:2015~2019中国私募基金市场风云变幻,先一睹为快吧!

和背景音乐一起播放更搭配哦!

大家可以基于私募基金数据做出更多有趣的可视化来!也欢迎大家踊跃投稿哦!

择日不如撞日,今天公众号手把手教你!

我们使用最流行的Python语言基于Matplotlib来实现上面的动态效果。案例和数据自1500年以来世界上10个最大城市排名。

准备工作

导入相关库:

使用pandas读取相关城市人口数据集。我们只需要4列数据:'name'、'group'、'year'、'value'。一个名称映射到一个组,每年有一个值。

原始数据集:

数据转换

使用pandas进行转换,得到前10个值。

基础图

让我们画一个基本的柱状图。首先创建一个图形和一个坐标轴。然后使用ax.barh (x,y)绘制水平条形图。

颜色、标签

接下来,让我们根据组添加值、组标签和颜色。使用 colors 和 group_lk 为条形图添加颜色。

group_lk 是 name 和 group 值之间的映射。

细节刻画

为了方便起见,我们将代码迁移到draw_barchart函数中:

  • Text:更新字体大小、颜色、方向

  • Axis:将x轴移动到顶部,添加颜色和副标题

  • Grid:在bars添加

  • Format:逗号分隔值和轴标记符

  • Remove:框架,y轴标签

动态化,激动人心!

要对上图进行动画处理,我们将使用 matplotlib.animation 中的 FuncAnimation

Functionatio 通过反复调用函数(在画布上绘制)来创建动画。在本例中,该函数将是 draw_barchart。 我们使用 frames,这个参数接受你想运行的 draw_barchart 的值——我们将从1968年运行到2018年。


我们还可以通过下面的红框,调整速度、倒退等操作。

你可以将动画对象保存为视频或gif形式:

OK,大功告成!赶快一显身手吧!

整个代码不到40行!

获取代码

代码链接:https://pan.baidu.com/s/1MBCCkvEdeboWS2Qkkp59RA  

密码:djxd

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我可以为您提供一些关于使用Python代码实现Transformer的指导。 首先,您需要安装PyTorch和torchtext库。然后,您可以按照以下步骤实现Transformer模型: 1. 定义输入和输出的词汇表,并使用torchtext库加载数据集。 2. 定义Transformer模型的编码器和解码器部分。 3. 实现自注意力机制(self-attention)和前向神经网络(feed-forward network)。 4. 实现残差连接(residual connection)和层归一化(layer normalization)。 5. 定义Transformer模型的训练和评估过程。 下面是一个简单的示例代码,用于实现一个基本的Transformer模型: ```python import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torchtext.datasets import TranslationDataset, Multi30k from torchtext.data import Field, BucketIterator # 定义输入和输出的词汇表 SRC = Field(tokenize='spacy', tokenizer_language='de', init_token='<sos>', eos_token='<eos>', lower=True) TRG = Field(tokenize='spacy', tokenizer_language='en', init_token='<sos>', eos_token='<eos>', lower=True) # 加载数据集 train_data, valid_data, test_data = Multi30k.splits(exts=('.de', '.en'), fields=(SRC, TRG)) SRC.build_vocab(train_data, min_freq=2) TRG.build_vocab(train_data, min_freq=2) # 定义Transformer模型的编码器和解码器部分 class Encoder(nn.Module): def __init__(self, input_dim, hid_dim, n_layers, n_heads, pf_dim, dropout, device): super().__init__() self.device = device self.tok_embedding = nn.Embedding(input_dim, hid_dim) self.pos_embedding = nn.Embedding(1000, hid_dim) self.layers = nn.ModuleList([EncoderLayer(hid_dim, n_heads, pf_dim, dropout, device) for _ in range(n_layers)]) self.dropout = nn.Dropout(dropout) self.scale = torch.sqrt(torch.FloatTensor([hid_dim])).to(device) def forward(self, src, src_mask): # src: [batch_size, src_len] # src_mask: [batch_size, 1, 1, src_len] batch_size = src.shape[0] src_len = src.shape[1] pos = torch.arange(0, src_len).unsqueeze(0).repeat(batch_size, 1).to(self.device) # pos: [batch_size, src_len] src = self.dropout((self.tok_embedding(src) * self.scale) + self.pos_embedding(pos)) for layer in self.layers: src = layer(src, src_mask) return src class EncoderLayer(nn.Module): def __init__(self, hid_dim, n_heads, pf_dim, dropout, device): super().__init__() self.self_attn_layer_norm = nn.LayerNorm(hid_dim) self.ff_layer_norm = nn.LayerNorm(hid_dim) self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device) self.positionwise_feedforward = PositionwiseFeedforwardLayer(hid_dim, pf_dim, dropout) self.dropout = nn.Dropout(dropout) def forward(self, src, src_mask):

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值