勾股定理竟然有500种证明方法,你会几种?

点击上方蓝字 关注我,涨知识

01

介绍

一个直角三角形,短的直角边叫勾,长的直角边叫股,斜边叫弦。勾的平方加股的平方等于弦的平方,所以称之为勾股定理。

02

商高提出

根据《周髀算经》记载,公元前1000年,商高(西周初数学家)与周公(名旦,姬昌第四子,儒学先驱)的对话中,首次提出了勾股定理。
《周髀算经》原文记载:

若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日。

03

毕达哥拉斯提出

公元前6世纪,古希腊数学家毕达哥拉斯,提出了勾股定理,但证明方法已失传。所以西方多称这个定理为毕达哥拉斯定理。

04

欧几里德证明

公元前4世纪,古希腊数学家欧几里德,在《几何原本》中明确证明了勾股定理。
说明:同底等高的长方形面积是三角形面积的2倍,如下同色块的面积是相等的。

05

赵爽证明

三国时期吴国数学家赵爽,在《周髀算经》的注释中记载“勾股各自乘,并之为玄实,开方除之即弦”。并通过“勾股圆方图”证明了勾股定理。
说明:大正方形的面积等于4个直角三角形加上一个小正方形面积之和。

06

爱因斯坦证明

爱因斯坦在11岁时获得了一本几何书,有一天叔叔给他讲勾股定理时,他觉得证明太复杂,于是就自己想了一种方法来证明。
说明:三个直角三角形相似,那么该三角形的面积与以斜边构成的正方形面积之比固定。

07

加菲尔德证明

加菲尔德在1880年当选美国第20任总统,他在五年前证明了勾股定理,因此也称这个证明方法为“总统证法”。
说明:梯形面积等于3个直角三角形的面积之和。

08

小K证明

通过相似三角形,边长之比相等,证明了勾股定理。

09

图形拼接证明

一切尽在不言中,别说话,看图。

10

辅助圆证明

以点B为圆心,BA为半径作圆,延长BC交圆于点E,D,则三角形DCA相似ACE。

11

切割定理证明

直角三角形ABC,以点B为圆心BC为半径作圆,交AB及AB延长线于D,E,则BE=BC=BD=a。

12

面积合成证明

一切尽在不言中,别说话,看图。

13

行列式证明

二阶行列式公式:

说明:二阶行列式等于以两个向量 为边张成的四边形的面积。

推广:n阶行列式就等于以n个向量为边在n维空间中张成的n维体的体积。(以后我会专门写一篇n维空间的文章)

14

无穷级数证明

根据极限定理,有

根据如下图先得到

然后通过如下图的无限划分,得到

再通过如下图得到

最后通过如下运算证明勾股定理。

15

鞋带公式证明

Shoelace公式,也叫高斯面积公式,用于求多边形面积。因为计算的时候交叉相乘像系鞋带一样,所以叫鞋带公式。

由N个顶点围成的多边形,顶点分别为

,则面积为:


如果喜欢小K的文章,请点个关注,分享给更多的人,小K将持续更新,谢谢啦!

关注我,涨知识

原创不易,感谢分享

转发,点赞,在看

往期精彩回顾

TCP/IP知识点及面试常考点总结

这份 Git 应急手册,关键时刻可保你一命

23 种设计模式的通俗解释,虽然有点污,但是秒懂 !

<think>嗯,用户让我写一段用Python证明勾股定理的代码。首先,我得回忆一下勾股定理是什么。勾股定理是说在直角三角形中,直角边的平方和等于斜边的平方,也就是a² + b² = c²。那证明的话,可能需要用几何方法或者代数方法,不过用户想要的是Python代码,所以可能需要用编程的方式来验证这个定理。 接下来,我需要考虑如何用Python来演示这个证明。可能的方法几种:比如,让用户输入两个直角边的长度,计算斜边,然后验证是否符合定理;或者用图形绘制直角三角形,计算各边平方,显示结果;或者通过数值例子来展示多个例子都符合定理。 不过,用户可能更希望看到的是通过代码实际验证定理的正确性,而不仅仅是计算斜边。所以可能需要生成一些具体的例子,或者使用已知的勾股数来验证。例如,经典的3-4-5三角形,5-12-13这样的组合,然后计算它们的平方和是否相等。 另外,代码需要结构清晰,可能包括输入处理、计算部分和输出验证结果。但如果是作为证明的话,可能需要更严谨的方式,比如用代数运算或者几何方法在代码中体现证明过程,但用编程语言来证明数学定理可能有点困难,更多是验证。 可能的步骤是:选择几组勾股数,计算a² + b²,然后与c²比较,输出结果是否相等。这样用户可以看到多个例子都满足条件,从而理解定理的正确性。 或者,可以使用可视化库如matplotlib绘制直角三角形,标注边长,并显示计算结果,但这样可能复杂度较高,特别是如果用户没有安装这些库的话,可能无法运行。 考虑到用户可能希望代码简单易懂,不需要额外安装库,所以应该使用标准库。因此,选择数值验证的方式比较合适。 于是,我可以编写一个函数,接收a和b作为参数,计算c的值,然后检查a² + b²是否等于c²。但需要注意,计算c的时候可能会有浮点数精度问题,所以可能需要四舍五入或者使用整数勾股数来避免这个问题。 比如,对于3和4,计算c=5,验证3²+4²=5²,即9+16=25,成立。同样,5和12,c=13,25+144=169,也成立。因此,可以预先定义几组勾股数,循环验证。 这样代码会比较简单,也直观。另外,可以允许用户输入两个直角边,计算斜边并验证,但需要处理输入可能为非数值的情况,增加异常处理。 总结来说,代码结构可以是: 1. 定义多组勾股数示例。 2. 对每组示例计算a² + b²和c²。 3. 比较两者是否相等,并输出结果。 这样用户运行代码后,可以看到多组测试用例都通过,从而理解勾股定理的正确性。 现在开始编写代码。首先定义几个勾股数的列表,比如[(3,4,5), (5,12,13), (8,15,17)],然后循环遍历每个元组,计算a² + b²是否等于c²,并打印结果。 需要注意的是,如果用户输入的代码中有浮点数,可能会有精度问题,所以最好使用整数例子。另外,输出信息要清晰,说明每个例子的验证过程和结果。 最后,可能还需要在代码中添加注释,解释每一步的作用,这样用户更容易理解代码的逻辑。</think>以下是用Python验证勾股定理的代码示例,通过经典勾股数演示$a^2 + b^2 = c^2$的成立: ```python # 定义多组勾股数示例(直角边a, 直角边b, 斜边c) pythagorean_triples = [ (3, 4, 5), (5, 12, 13), (8, 15, 17), (7, 24, 25), (9, 40, 41) ] # 遍历每组数据进行验证 for a, b, c in pythagorean_triples: left = a**2 + b**2 # 计算a² + b² right = c**2 # 计算c² print(f"验证 {a}-{b}-{c}:{a}² + {b}² = {left},{c}² = {right} → 结果 {&#39;成立&#39; if left == right else &#39;不成立&#39;}") ``` 输出结果: ``` 验证 3-4-53² + 4² = 255² = 25 → 结果 成立 验证 5-12-135² + 12² = 169,13² = 169 → 结果 成立 验证 8-15-17:8² + 15² = 289,17² = 289 → 结果 成立 验证 7-24-25:7² + 24² = 625,25² = 625 → 结果 成立 验证 9-40-41:9² + 40² = 1681,41² = 1681 → 结果 成立 ``` **代码原理**: 1. 选择已知满足勾股定理的整数组合(避免浮点误差) 2. 对每组数据分别计算$a^2 + b^2$和$c^2$ 3. 通过严格相等验证定理成立性 **拓展功能**(可自行尝试): ```python # 自定义直角边计算斜边 def calculate_hypotenuse(a, b): return (a**2 + b**2)**0.5 # 示例:计算直角边6和8的斜边 print(calculate_hypotenuse(6, 8)) # 输出10.0 ``` > 提示:数学证明通常需要几何/代数推导,编程验证可通过数值计算辅助理解定理的普遍适用性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值