WAS password Decoder & Encoder

本文详细介绍了 WebSphere 应用服务器中不同版本的安全配置,包括密码解码与编码的具体实现方式。通过分析,读者可以了解到如何设置 WASAdmin 控制台密码、管理授权以及数据库密码等关键安全信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

$ Decoder / Encoder

/opt/WebSphere85/AppServer/java/bin/java -Djava.ext.dirs=/opt/WebSphere85/AppServer/plugins:/opt/WebSphere85/AppServer/lib com.ibm.ws.security.util.PasswordDecoder {xor}GyhrbiYGKmc=

/opt/WebSphere70/AppServer/java/bin/java -Djava.ext.dirs=/opt/WebSphere70/AppServer/plugins:/opt/WebSphere70/AppServer/lib com.ibm.ws.security.util.PasswordDecoder {xor}GyhrbiYGKmc=

 

/opt/WebSphere85/AppServer/java/bin/java -Djava.ext.dirs=/opt/WebSphere85/AppServer/plugins:/opt/WebSphere85/AppServer/lib com.ibm.ws.security.util.PasswordEncoder Dw41yYu8

/opt/WebSphere70/AppServer/java/bin/java -Djava.ext.dirs=/opt/WebSphere70/AppServer/plugins:/opt/WebSphere70/AppServer/lib com.ibm.ws.security.util.PasswordEncoder Dw41yYu8

 

$ WAS Admin Console Password:

/opt/WebSphere85/profiles/appprofile/properties/sas.client.props

# RMI/IIOP user identity

com.ibm.CORBA.loginUserid=wsadmin

com.ibm.CORBA.loginPassword={xor}GyhrbiYGKmc=

 

$ WAS admin Console management

/opt/WebSphere85/profiles/dmgrprofile/config/cells/wascell/admin-authz.xml

 

$ DB password

/opt/WebSphere85/profiles/dmgrprofile/config/cells/wascell/security.xml

<authDataEntries xmi:id="JAASAuthData_1385436549006" alias="dmgrnode/user_alias" userId="user" password="{xor}BT0+GHRobWo=" description=""/>

A ResNet-based Convolutional Decoder-Encoder is a type of neural network architecture that combines the principles of Residual Networks (ResNets) and Decoder-Encoder networks. ResNets are deep neural networks that use skip connections to avoid the vanishing gradient problem and allow for the training of very deep networks. Decoder-Encoder networks, on the other hand, are used for tasks such as image segmentation, object detection, and image generation. The ResNet-based Convolutional Decoder-Encoder architecture consists of a series of encoder layers that downsample the input image and a series of decoder layers that upsample the encoded features to generate the output image. The encoder layers typically consist of Convolutional Layers followed by Batch Normalization and ReLU activation. The decoder layers consist of transposed convolutional layers, also known as deconvolutional layers, followed by Batch Normalization and ReLU activation. The skip connections in the ResNet-based Convolutional Decoder-Encoder architecture allow for the direct transfer of information from the encoder to the decoder layers, which helps to preserve important features and reduce the effects of information loss during the downsampling process. The resulting network can be trained end-to-end using backpropagation to minimize a loss function that measures the difference between the predicted and ground truth images. ResNet-based Convolutional Decoder-Encoder networks have been used successfully for a variety of image reconstruction and generation tasks, including image denoising, super-resolution, and inpainting.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值