最小费用最大流之 zkw费用流与普通费用流

http://www.artofproblemsolving.com/blog/54262

这个是原作者的博文地址

这是今天刚学的,不过理解上还是很浅薄。最近发现算法不能融会贯通还是因为自己太死板了。

奉上一个基础版本的模板, POJ 2195 的代码。

本模板是不能直接用于任何有负权的图,更不能用于有负圈的情况

#include <iostream>
#include <algorithm>
#include <cstring>
#include <string>
#include <cstdio>
#include <cmath>
#include <queue>
#include <map>
#include <set>
#define eps 1e-5
#define MAXN 222
#define MAXM 55555
#define INF 1000000007
using namespace std;
struct EDGE
{
    int cost, cap, v;
    int next, re;
}edge[MAXM];
int head[MAXN], e;
int vis[MAXN];
int ans, cost, src, des, n;
void init()
{
    memset(head, -1, sizeof(head));
    e = 0;
    ans = cost = 0;
}
void add(int u, int v, int cap, int cost)
{
    edge[e].v = v;
    edge[e].cap = cap;
    edge[e].cost = cost;
    edge[e].re = e + 1;
    edge[e].next = head[u];
    head[u] = e++;
    edge[e].v = u;
    edge[e].cap = 0;
    edge[e].cost = -cost;
    edge[e].re = e - 1;
    edge[e].next = head[v];
    head[v] = e++;
}
int aug(int u, int f)
{
    if(u == des)
    {
        ans += cost * f;
        return f;
    }
    vis[u] = 1;
    int tmp = f;
    for(int i = head[u]; i != -1; i = edge[i].next)
        if(edge[i].cap && !edge[i].cost && !vis[edge[i].v])
        {
            int delta = aug(edge[i].v, tmp < edge[i].cap ? tmp : edge[i].cap);
            edge[i].cap -= delta;
            edge[edge[i].re].cap += delta;
            tmp -= delta;
            if(!tmp) return f;
        }
    return f - tmp;
}
bool modlabel()
{
    int delta = INF;
    for(int u = 1; u <= n; u++)
        if(vis[u])
            for(int i = head[u]; i != -1; i = edge[i].next)
                if(edge[i].cap && !vis[edge[i].v] && edge[i].cost < delta) delta = edge[i].cost;
    if(delta == INF) return false;
    for(int u = 1; u <= n; u++)
        if(vis[u])
            for(int i = head[u]; i != -1; i = edge[i].next)
                edge[i].cost -= delta, edge[edge[i].re].cost += delta;
    cost += delta;
    return true;
}
void costflow()
{
    do
    {
        do
        {
            memset(vis, 0, sizeof(vis));
        }while(aug(src, INF));
    }while(modlabel());
}
int nt, m;
struct point
{
    int x, y;
}p[MAXN], h[MAXN];
int d[MAXN][MAXN];
char s[MAXN][MAXN];
int main()
{
    while(scanf("%d%d", &m, &nt) != EOF)
    {
        if(m == 0 && nt == 0) break;
        for(int i = 0; i < m; i++)
            scanf("%s", s[i]);
        int hcnt = 0, pcnt = 0;
        for(int i = 0; i < m; i++)
            for(int j = 0; j < nt; j++)
            {
                if(s[i][j] == 'H')
                {
                    hcnt++;
                    h[hcnt].x = i;
                    h[hcnt].y = j;
                }
                else if(s[i][j] == 'm')
                {
                    pcnt++;
                    p[pcnt].x = i;
                    p[pcnt].y = j;
                }
            }
        for(int i = 1; i <= pcnt; i++)
            for(int j = 1; j <= hcnt; j++)
                d[i][j] = abs(p[i].x - h[j].x) + abs(p[i].y - h[j].y);
        init();
        n = hcnt + pcnt + 2;
        src = hcnt + pcnt + 1;
        des = n;
        for(int i = 1; i <= pcnt; i++)
            for(int j = 1; j <= hcnt; j++)
                add(i, j + pcnt, 1, d[i][j]);
        for(int i = 1; i <= pcnt; i++)
            add(src, i, 1, 0);
        for(int i = 1; i <= hcnt; i++)
            add(i + pcnt, des, 1, 0);
        costflow();
        printf("%d\n", ans);
    }
    return 0;
}

然后再来一个最基础的模板

这个模板呢,跟上一个一样的地方就是初始化,src代表起点,des是终点,n是顶点的个数


#include <iostream>
#include <algorithm>
#include <cstring>
#include <string>
#include <cstdio>
#include <cmath>
#include <queue>
#include <map>
#include <set>
#define eps 1e-5
#define MAXN 555
#define MAXM 55555
#define INF 100000007
using namespace std;
struct EDGE
{
    int v, cap, cost, next, re;    //  re记录逆边的下标。
}edge[MAXM];
int n, m, ans, flow, src, des;
int e, head[MAXN];
int que[MAXN], pre[MAXN], dis[MAXN];
bool vis[MAXN];
void init()
{
    e = ans = flow = 0;
    memset(head, -1, sizeof(head));
}
void addEdge(int u, int v, int cap, int cost)
{
    edge[e].v = v;
    edge[e].cap = cap;
    edge[e].cost = cost;
    edge[e].next = head[u];
    edge[e].re = e + 1;
    head[u] = e++;
    edge[e].v = u;
    edge[e].cap = 0;
    edge[e].cost = -cost;
    edge[e].next = head[v];
    edge[e].re = e - 1;
    head[v] = e++;
}
bool spfa()
{
    int i, h = 0, t = 1;
    for(i = 0; i < MAXN; i ++)
    {
        dis[i] = INF;
        vis[i] = false;
    }
    dis[src] = 0;
    que[0] = src;
    vis[src] = true;
    while(t > h)
    {
        int u = que[h++];
        for(i = head[u]; i != -1; i = edge[i].next)
        {
            int v = edge[i].v;
            if(edge[i].cap && dis[v] > dis[u] + edge[i].cost)
            {
                dis[v] = dis[u] + edge[i].cost;
                pre[v] = i;
                if(!vis[v])
                {
                    vis[v] = true;
                    que[t++] = v;
                }
            }
        }
        vis[u] = false;
    }
    if(dis[des] == INF) return false;
    return true;
}
void end()
{
    int u, p, mi = INF;
    for(u = des; u != src; u = edge[edge[p].re].v)
    {
        p = pre[u];
        mi = min(mi, edge[p].cap);
    }
    for(u = des; u != src; u = edge[edge[p].re].v)
    {
        p = pre[u];
        edge[p].cap -= mi;
        edge[edge[p].re].cap += mi;
        ans += mi * edge[p].cost;     //  cost记录的为单位流量费用,必须得乘以流量。
    }
    flow += mi;
}
void build()
{

}
void MCMF()
{
    init();
    build();
    while(spfa()) end();
}
int main()
{

    return 0;
}


最后来一个使用 Small Label First 优化

的 SPFA 来维护 zkw 算法中的距离标号, 保留多路增广

这也是根据原作者的程序改的,这个貌似就可以用负的边权了

#include <iostream>
#include <algorithm>
#include <cstring>
#include <string>
#include <cstdio>
#include <cmath>
#include <queue>
#include <deque>
#include <map>
#include <set>
#define eps 1e-5
#define MAXN 555
#define MAXM 55555
#define INF 100000007
using namespace std;
struct EDGE
{
    int cost, cap, v;
    int next, re;
}edge[MAXM];
int head[MAXN], e;
int vis[MAXN], d[MAXN];
int ans, cost, src, des, n;
void init()
{
    memset(head, -1, sizeof(head));
    e = 0;
    ans = cost = 0;
}
void add(int u, int v, int cap, int cost)
{
    edge[e].v = v;
    edge[e].cap = cap;
    edge[e].cost = cost;
    edge[e].re = e + 1;
    edge[e].next = head[u];
    head[u] = e++;
    edge[e].v = u;
    edge[e].cap = 0;
    edge[e].cost = -cost;
    edge[e].re = e - 1;
    edge[e].next = head[v];
    head[v] = e++;
}
int aug(int u, int f)
{
    if(u == des)
    {
        ans += cost * f;
        return f;
    }
    vis[u] = 1;
    int tmp = f;
    for(int i = head[u]; i != -1; i = edge[i].next)
        if(edge[i].cap && !edge[i].cost && !vis[edge[i].v])
        {
            int delta = aug(edge[i].v, tmp < edge[i].cap ? tmp : edge[i].cap);
            edge[i].cap -= delta;
            edge[edge[i].re].cap += delta;
            tmp -= delta;
            if(!tmp) return f;
        }
    return f - tmp;
}
bool modlabel()
{
    for(int i = 0; i <= n; i++) d[i] = INF;
    d[des] = 0;
    deque<int>Q;
    Q.push_back(des);
    while(!Q.empty())
    {
        int u = Q.front(), tmp;
        Q.pop_front();
        for(int i = head[u]; i != -1; i = edge[i].next)
            if(edge[edge[i].re].cap && (tmp = d[u] - edge[i].cost) < d[edge[i].v])
                (d[edge[i].v] = tmp) <= d[Q.empty() ? src : Q.front()] ? Q.push_front(edge[i].v) : Q.push_back(edge[i].v);
    }
    for(int u = 1; u <= n; u++)
        for(int i = head[u]; i != -1; i = edge[i].next)
            edge[i].cost += d[edge[i].v] - d[u];
    cost += d[src];
    return d[src] < INF;
}
void costflow()
{
    while(modlabel())
    {
        do
        {
            memset(vis, 0, sizeof(vis));
        }while(aug(src, INF));
    }
}
int nt, m;
struct point
{
    int x, y;
}p[MAXN], h[MAXN];
int dis[MAXN][MAXN];
char s[MAXN][MAXN];
int main()
{
    while(scanf("%d%d", &m, &nt) != EOF)
    {
        if(m == 0 && nt == 0) break;
        for(int i = 0; i < m; i++)
            scanf("%s", s[i]);
        int hcnt = 0, pcnt = 0;
        for(int i = 0; i < m; i++)
            for(int j = 0; j < nt; j++)
            {
                if(s[i][j] == 'H')
                {
                    hcnt++;
                    h[hcnt].x = i;
                    h[hcnt].y = j;
                }
                else if(s[i][j] == 'm')
                {
                    pcnt++;
                    p[pcnt].x = i;
                    p[pcnt].y = j;
                }
            }
        for(int i = 1; i <= pcnt; i++)
            for(int j = 1; j <= hcnt; j++)
                dis[i][j] = abs(p[i].x - h[j].x) + abs(p[i].y - h[j].y);
        init();
        n = hcnt + pcnt + 2;
        src = hcnt + pcnt + 1;
        des = n;
        for(int i = 1; i <= pcnt; i++)
            for(int j = 1; j <= hcnt; j++)
                add(i, j + pcnt, 1, dis[i][j]);
        for(int i = 1; i <= pcnt; i++)
            add(src, i, 1, 0);
        for(int i = 1; i <= hcnt; i++)
            add(i + pcnt, des, 1, 0);
        costflow();
        printf("%d\n", ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值