求第n个斐波那契数

今天看到群友发的一个问题:写一个小程序打印第n个斐波那契数。
自己试了下,搞了好久。。。基础要加强了。

进入正题,什么是斐波那契数列就不说了,拿到这个题目,直接写出如下代码:

public static long findFibonacci(int n){
if(n <= 2){
return 1;
}else{
return findFibonacci(n - 1) + findFibonacci(n - 2);
}
}

运行一下,输入n分别为:1,2,3,4,5 输出分别为1,1,2,3,5。貌似是正确的,看看有什么问题,如果我们输入n为45。

public static void main(String[] args) {
long s = System.currentTimeMillis();
System.out.println(findFibonacci(45));
long e = System.currentTimeMillis();
System.out.println("程序运行耗时["+(e-s)+"]毫秒!");
}

输出如下:

1134903170
程序运行耗时[4875]毫秒!

如果输入100的话,就一直在运行。。。。。
上面程序的问题在于,计算第n个f数时需要计算第n-1和第n-2个f数,但是计算第n+1个f数的时候又要重新计算第n个f数,如此反复,要处理的子问题的数量爆炸式增长。我们加点输出看看。

public static long findFibonacci(int n){
if(n <= 2){
System.out.println("计算第["+n+"]个斐波那契数[1]");
return 1;
}else{
long fb = findFibonacci(n - 1) + findFibonacci(n - 2);
System.out.println("计算第["+n+"]个斐波那契数["+fb+"]");
return fb;
}
}

n输入为5,输出如下:

计算第[2]个斐波那契数[1]
计算第[1]个斐波那契数[1]
计算第[3]个斐波那契数[2]
计算第[2]个斐波那契数[1]
计算第[4]个斐波那契数[3]
计算第[2]个斐波那契数[1]
计算第[1]个斐波那契数[1]
计算第[3]个斐波那契数[2]
计算第[5]个斐波那契数[5]
5
程序运行耗时[0]毫秒!


如何解决这个问题呢,如果我们能重复利用子问题的结果,而不是每次去重新求解子问题,这样程序就会快很多,这种处理问题的方式也叫做动态规划。
针对这个问题,假设我们要求第n个斐波那契数,我们可以建立一个长度为n(为n-1就可以,但为了编码方便)的数组用来保存子问题结果,代码如下:

private static long findFibonacci1(int n, long[] c){
int index = n - 1;
if(c[index] != 0){
return c[index];
}
if(n <= 2){
c[index] = 1;
}else{
c[index] = findFibonacci1(n - 1,c) + findFibonacci1(n - 2,c);
}
return c[index];
}

public static long findFibonacci1(int n){
long c[] = new long[n];
return findFibonacci1(n,c);
}

这次输入45,看看结果:

1134903170
程序运行耗时[0]毫秒!


这次没问题了。再想想,其实每次求第n个f数只需要重用第n-1和第n-2个f数就可以了,而且依据代码,问题的解决是自底向上的,所以每次保存2个就够了,我们先搞点日志看看。

private static long findFibonacci1(int n, long[] c){
int index = n - 1;
if(c[index] != 0){
System.out.println("从数组下标["+index+"]中获取数据["+c[index]+"]");
return c[index];
}
if(n <= 2){
c[index] = 1;
}else{
c[index] = findFibonacci1(n - 1,c) + findFibonacci1(n - 2,c);
}
return c[index];
}

输入7,看输出:

从数组下标[1]中获取数据[1]
从数组下标[2]中获取数据[2]
从数组下标[3]中获取数据[3]
从数组下标[4]中获取数据[5]
13
程序运行耗时[0]毫秒!

可以看到,会从小到大从数组中取数据。继续看看能不能每次只保存2个子问题结果。看代码:

private static long findFibonacci2(int n, long[] c){
int index = n % 2;
if(c[index] != 0){
System.out.println("从数组下标["+index+"]中获取数据["+c[index]+"]");
return c[index];
}
if(n <= 2){
c[index] = 1;
}else{
c[index] = findFibonacci2(n - 1,c) + findFibonacci2(n - 2,c);
}
return c[index];
}

public static long findFibonacci2(int n){
long c[] = new long[2];
return findFibonacci2(n,c);
}

输出8,看看输出:

从数组下标[0]中获取数据[1]
从数组下标[1]中获取数据[2]
从数组下标[0]中获取数据[3]
从数组下标[1]中获取数据[5]
从数组下标[0]中获取数据[8]
21
程序运行耗时[0]毫秒!


嗯,果然可以。去掉打印语句,输出1000,看看输出:

817770325994397771
程序运行耗时[0]毫秒!

ok,嘎嘎。不过这道题直接用循环貌似更简单。。。。
再来个更短的(无聊)

private static long f(int n, long[] a){
return a[n & 1] == 0 ? (n <= 2 ? (a[n & 1] = 1)
:(a[n & 1] = f(n - 1, a) + f(n - 2, a))) : a[n & 1];
}

public static long findNthFibonacci(int n){
return f(n, new long[2]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值