题目:
输入一个整型数组,数据元素有正数也有负数,求元素组合成连续子数组之和最大的子数组,要求时间复杂度为O(n)。
例如:
输入的数组为1, -2, 3, 10, -4, 7, 2, -5,最大和的连续子数组为3, 10, -4, 7, 2,其最大和为18。
背景:
本题最初为2005年浙江大学计算机系考研题的最后一道程序设计题,在2006年里包括google在内的很多知名公司都把本题当作面试题。
由于本题在网络中广为流传,本题也顺利成为2006年程序员面试题中经典中的经典。
分析:
如果不考虑时间复杂度,我们可以枚举出所有子数组并求出他们的和。不过非常遗憾的是,由于长度为n的数组有O(n2)个子数组(即:n + n-1 + ... + 1=n(n+1)/2);而且求一个长度为n的数组的和的时间复杂度为O(n)。因此这种思路的时间是O(n3)。
很容易理解,当我们加上一个正数时,和会增加;当我们加上一个负数时,和会减少。如果当前得到的和是个负数,那么这个和在接下来的累加中应该抛弃并重新清零,不然的话这个负数将会减少接下来的和。基于这样的思路,我们可以写出如下代码。
void MaxSum(int array[], unsigned int len)
{
if(NULL == array || len <=0){
return;
}
int curSum = 0, maxSum = 0;
int i = 0;
for(i=0; i<len; i++){
curSum += array[i]; // 累加
if(curSum < 0){ // 当前和小于0,重置为0
curSum = 0;
}
if(curSum > maxSum){ // 当前和大于最大和,则重置最大和
maxSum = curSum;
}
}
if(maxSum == 0){ // 最大和依然为0,说明数组中所有元素都为负值
maxSum = array[0];
for(i=1; i<len; i++){
if(array[i] > maxSum){
maxSum = array[i];
}
}
}
printf("maxSum: %d", maxSum);
}
测试数组:
int array[] = {1, -2, 3, 10, -4, 7, 2, -5}; // 3, 10, -4, 7, 2 = 18
运行结果:
代码改进:
有时,需要输出最大和的子数组及其开始、结束下标,代码如下:
void MaxSum(int array[], unsigned int len)
{
if(NULL == array || len <=0){
return;
}
int curSum = 0, maxSum = 0;
int index_start = 0, index_end = 0; // 初始化子数组最大和下标
int i = 0;
for(i=0; i<len; i++){
curSum += array[i]; // 累加
if(curSum < 0){ // 当前和小于0,重置为0
curSum = 0;
index_start = i+1; // 调整子数组最大和的开始下标
}
if(curSum > maxSum){ // 当前和大于最大和,则重置最大和
maxSum = curSum;
index_end = i; // 调整子数组最大和的结束下标
}
}
if(maxSum == 0){ // 最大和依然为0,说明数组中所有元素都为负值
maxSum = array[0];
index_start = index_end = 0; // 初始化子数组最大和下标
for(i=1; i<len; i++){
if(array[i] > maxSum){
maxSum = array[i];
index_start = index_end = i; // 调整子数组最大和下标
}
}
}
// 输出最大和的子数组及其开始、结束下标
printf("index_start: %d\nindex_end: %d\n", index_start, index_end);
for(i=index_start; i<=index_end; i++){
printf("%d\t", array[i]);
}
printf("\n\nmaxSum: %d", maxSum);
}
测试数组:
int array[] = {1, -2, 3, 10, -4, 7, 2, -5}; // 3, 10, -4, 7, 2 = 18
运行结果:
参考推荐: