<wbr>一直都想写一点数据分析的东西,但一直不知如何着手。就像写文章一样,一定要有一个话题去切入。前段时间小崔推荐了车品觉(支付宝BI的老大,百度百科可以查的到的人物)的一篇文章《数据是一种信仰》,然后我又看了他的《不懂商业就别谈数据》和其他的一些文章,写的确实很牛X,但自我感觉没有超出我的思想范围(有点自夸),不过我没有他的文采,没有他的阅历和经验。但由此触发了我的一些写作冲动。总结是一种好的习惯,落实到纸上更能产生升华的东西,所以才有了这些文字。</wbr>
<wbr><wbr><wbr> 谈到数据分析,我想先列出我和大部分人脑海中会出现的词汇:</wbr></wbr></wbr>
<wbr><wbr><wbr> BI、报表、分析报告、数据挖掘、数据集市、建模、统计学、机器学习、运筹学、评分卡、算法、咨询公司、云计算、SAS、Cognos等报表工具……</wbr></wbr></wbr>
<wbr><wbr><wbr> 可以继续写下去,估计可以扩展到所有自然学科。</wbr></wbr></wbr>
<wbr><wbr><wbr> 毕达哥拉斯说世界的本原是数,(“1”是数的第一原则,万物之母,也是智慧;“2”是对立和否定的原则,是意见;“3”是万物的形体和形式;“4”是正义,是宇宙创造者的象征;“5”是奇数和偶数,雄性与雌性和结合,也是婚姻;“6”是神的生命,是灵魂;“7”是机会;“8”是和谐,也是爱情和友谊;“9”是理性和强大;“10”包容了一切数目,是完满和美好),看来是有一定的道理的,几乎所有的事物都和数字有着密切的关系。我只是想说,数据分析所涵盖的内容太广泛了,任何一个词汇,都是一本书或者几本书的内容,我不想做深入的讨论,好像也没有这个能力,只是对BI类的数据分析说一些自己的见解。</wbr></wbr></wbr>
一、数据分析有用吗?
<wbr><wbr><wbr> 作为一个做数据工作的人来讲,我真想说(也曾经这么认为)数据分析是多么的重要,数据能真实快速的表征企业现有业务运营状况,找出风险点和利润点,直接影响高层决策。但仔细想想,目前的企业中有多少是看数据的呢?数据分析真能起到那么大的作用吗?肯定不是。</wbr></wbr></wbr>
<wbr><wbr><wbr> 我列出几个要素:产品,营销,管理水平,渠道,外部资源,服务,领导力,细节,政策扶持,资金运作,物流,IT水平,数据分析。</wbr></wbr></wbr>
<wbr><wbr><wbr> 以上这些要素中,哪一个是企业发展的关键呢?我相信没有人会选数据分析。任何一个成功的企业之所以成功,也不是由于数据分析的重大贡献。很多时候,数据分析是往往是锦上添花的,而不是是雪中送炭的。例如,数据分析做的好的,比如NBA,看NBA的时候,真是惊叹他们的工程师,在转播时,能行云流水般的供应那么多的信息量,包括实时的数据展示和历史数据的挖掘结果,但NBA最重要的是市场运作,是那些球员,是大卫斯特恩的经营、是训练水平、是健全的制度、是转播水平等等因素,而不是这些数据专家。</wbr></wbr></wbr>
<wbr><wbr><wbr> 但数据分析不是没有用,企业又时时刻刻离不开数据分析,个人也离不开数据分析,生活也到处都是数据分析。电视上充斥着各种系数,网络上到处是各种秘诀,企业到处都是报表和报告。而且某些报告还相当值钱,有些公司就靠提供数据服务生存,有的甚至直接卖数据。</wbr></wbr></wbr>
<wbr><wbr><wbr> 所以,我认为,数据分析只是起辅助作用,而不是决定作用,是基础,而不是关键,是必要条件,而不是充分条件,是用数据,而不是依赖数据。数据分析只适用于某些企业,只适用于发展到一定阶段的企业。</wbr></wbr></wbr>
<wbr></wbr>
二、数据如何用的问题。
<wbr><wbr><wbr> 一个成功的电影包括了剧本、导演、演员、服装、灯光、布景、音乐、营销、摄影、剪辑等等,各个因素都决定了一个电影的好坏。同样,数据分析也是这样,源系统数据库设计是否合理、数据质量能否保证、架构设计是否优良、计算能力可否承受、需求分析是否清晰、业务建模是否合理、采用算法是否合适、数据展现是否便捷、使用是否友好、应用效果如何评估等等,甚至还有很多现实的因素,如:业务人员的水平、分析人员的水平、项目管理的水平、财务预算是不是够、高层领导是否支持等,所有的因素都影响了数据分析的成败。</wbr></wbr></wbr>
<wbr><wbr><wbr> 所以,上面提到(报表、模型、集市……)的都属于BI,但都是BI的一小部分,而不是真正的BI。限于自己的眼光,个人认为目前大部分的BI是割裂的,是各自为政的,而且各自认为自己的所做的很强,SAS公司宣传自己的模块、IBM宣传自己的Cognos、Oracle也在卖自己的展示工具、模型的人看不起做ETL的、业务专家又嘲笑建模的人思维死板模型不够灵活、提供数据的认为业务人员提的需求不合理、业务人员觉得技术人员连TM的数都算不对、做的系统不友好又很脆弱…………</wbr></wbr></wbr>
<wbr><wbr><wbr> BI或者说商务领域中的数据分析其实是“数据-->信息-->价值-->产品”的过程。而且一定是服务于不同层级的业务人员。从这个角度一般是从技术上看的,如果从公司需求上看,应该是“市场需求-->产品需求-->系统需求-->产生数据-->收集数据-->BI-->决策”</wbr></wbr></wbr>
<wbr><wbr><wbr> 在竞争比较充分的行业里,几乎所有的决策都要看数据,(如果有人还处在发挥想象力,拍脑袋的阶段,基本上属于空想派,甚至属于添乱的那种人)任何一个决策下去,就意味着资源的投入,市场上的表现基本上就定了。</wbr></wbr></wbr>
先谈下使用数据的人。
1)高层领导,总监、副总、总经理等级别。个人认为,这部分人重要的是外部资源和方向性的东西,决定要做什么,然后找到做事的人,然后管理这些人。所以,这部分人肯定不是看分析报表的,而是要看分析报告,甚至不是自己看,而是让人讲。且不是天天听,而是阶段性的听汇报就ok了。BI给这些人的服务,一定是简洁明了的表征现有业务运营现状,及时发现问题,然后让下面的人去解决。
2)给领导汇报的人,可以是中层领导,也可以是专门的分析人员。这些人一定是业务非常熟悉,并且了解数据的人,这是主要客户。对于这些人,完善丰富的报表体系是必须的,这部分人应该有最大权限的数据,报表和明细数据的查看都是必须的。但目前来看,这个群体大部分没有技术能力,必须依靠别人产生报表。这也许是中国目前BI项目失败概率如此之高的原因。他大部分的时间消耗在需求的提出和沟通上了,得到一个数据基本上要以天为单位,沟通的时间多了,思考的时间就少了,就不用提给出一份像样的分析报告了。
3)做模型和做报表的人,这部分人是实现想法的人。他们精通数据,了解业务。这部分人大体有这几类,专门做模型的,做报表的,做展示功能的。目前,做模型的用的都是成熟的算法和现成的工具,大部分是在做数据处理,然后调整变量做验证的事情。专门做工具的会去研究算法实现的问题,还有读博士的会去研究算法本身的问题。做报表的人,是根据现有数据做加工,给出基本的业务概况,这部分工作较繁琐,但最基本,最重要。做展示功能的,大部分也是在做实施,用现有的报表工具进行数据的展示,包括图形化界面,多维的展示等,个别会去做工具本身的开发。
4)前端业务人员,这部分基本上不用做复杂的分析,不做决策,但是要用数据做事情。比如银行中的营销、客服、审批、催收等等,这些人要实时的看数据,是明细信息,而不是报表,而且要操作方便,数据及时。
5)做平台的人。数据仓库、ETL、架构设计、存储、计算。这些人是基础服务,为其他人供给粮食。主要是大规模数据处理、分布式计算平台、计算基础指标、保证运算速度和数据质量等等。
<wbr></wbr>
<wbr><wbr><wbr> 以上这些都做的不错的公司不多,如果都每项都做的比较好,就应该算是国内做的不错的了,大部分公司还处在初级阶段,只能做其中的几项工作。凡是做得起海量计算的都是大公司,大公司的数据分析都是大投入,不论是硬件、软件、人员都是要砸很多钱进去的。</wbr></wbr></wbr>
三、一些想法
现在的BI建设,有很多乱象。
1)报表和指标的急剧膨胀2)数据质量管理问题严重3)各个角色脱节,互相不去学习其他环节的知识4)数据多了,信息反而少了5)盲目迷信新技术和专家6)炒概念现象严重7)急功近利心态严重8)分析过头现象
个人认为,真正的BI是业务与技术的完美结合。
具体表现:
精通业务,
精通数据,看数据可以还原到每一个业务场景,知道从何处来,到何处去。看业务可随时提炼数据
行业知识的扎实积累和商业感觉的培养
清晰业务的关键点,抓核心的能力
精通技术,不依赖他人的取得数据的能力
分析思想,主流数据挖掘算法的原理,统计学,机器学习等。
撰写文档和PPT的能力、表达能力
<wbr></wbr>
数据分析人员,一定是既能把事情搞复杂,也能把事情搞简单的人。
数据分析工作肯定是一种乐趣,而不是工作。
<wbr></wbr>
四、具体做法
一条线贯通的人是不多的,不过不是没有,见过一些。
任何一件事都是这样,不是说具备了某些能力,才去做事情,而且通过做事情培养了这些能力。
想做的数据产品:
1)<wbr> 指标库:包括元数据管理系统、指标管理系统、需求生成系统</wbr>
2)<wbr> 核心指标体系的建立</wbr>
3)<wbr> 最核心报表(监控报表体系和分析报表体系)的建立</wbr>
4)<wbr> 指标搜索系统的开发</wbr>
<wbr></wbr>
在此基础之上的专项的客户分析产品,客户的行为特征,评价体系等等。这才是我们的核心资产。