〖数学算法〗开平方的七种算法

sqrt()函数,是绝大部分语言支持的常用函数,它实现的是开方运算;开方运算最早是在我国魏晋时数学家刘徽所著的《九章算术》被提及。今天写了几个函数加上国外大神的几个神级程序带大家领略sqrt的神奇之处。


1.古人算法(暴力法)

原理:从0开始0.00001,000002...一个一个试,直到找到x的平方根,代码如下:

public class APIsqrt {

	static double baoliSqrt(double x) {

		final double _JINGDU = 1e-6;
		double i;
		for (i = 0; Math.abs(x - i * i) > _JINGDU; i += _JINGDU)
			;
		return i;
	}

	public static void main(String[] args) {
		double x = 3;
		double root = baoliSqrt(x);
		System.out.println(root);
	}
}

测试结果:

1.7320509999476947

2.牛顿迭代法

计算机科班出身的童鞋可能首先会想到的是《数值分析》中的牛顿迭代法求平方根。原理是:随意选一个数比如说8,要求根号3,我们可以这么算:

(8 + 3/8) =4.1875

(4.1875 + 3/4.1875) =2.4519

(2.4519 + 3/2.4519) =1.837

(1.837+ 3/1.837) =1.735

做了4步基本算出了近似值了,这种迭代的方式就是传说中的牛顿迭代法了,代码如下:

public class APIsqrt {

	static double newtonSqrt(double x) {

		if (x < 0) {
			System.out.println("负数没事开什么方");
			return -1;
		}
		if (x == 0)
			return 0;

		double _avg = x;
		double last_avg = Double.MAX_VALUE;
		final double _JINGDU = 1e-6;

		while (Math.abs(_avg - last_avg) > _JINGDU) {
			last_avg = _avg;
			_avg = (_avg + x / _avg) / 2;
		}
		return _avg;
	}

	public static void main(String[] args) {
		double x = 3;
		double root = newtonSqrt(x);
		System.out.println(root);
	}
}

测试结果:

1.7320508075688772


3.暴力-牛顿综合法

原理:还是以根号3为例,先用暴力法讲根号3逼近到1.7,然后再利用上述的牛顿迭代法。虽然没有用牛顿迭代好,但是也为我们提供一种思路。代码如下:

public class APIsqrt {

	static double baoliAndNewTonSqrt(double x) {
	
		if (x < 0) {
			System.out.println("负数没事开什么方");
			return -1;
		}
		if (x == 0)
			return 0;

		double i = 0;
		double _avg;
		double last_avg = Double.MAX_VALUE;
		for (i = 0; i*i < x; i += 0.1);
		_avg = i;

		final double _JINGDU = 1e-6;

		while (Math.abs(_avg - last_avg) > _JINGDU) {
			last_avg = _avg;
			_avg = (_avg + x / _avg) / 2;
		}
		return _avg;
	}
	
	public static void main(String[] args) {
		double x = 3;
		double root = baoliAndNewTonSqrt(x);
		System.out.println(root);
	}
}

测试结果:

1.7320508075689423


4.二分开方法

原理:还是以3举例:

(0+3)/2 = 1.5, 1.5^2 = 2.25, 2.25 < 3;

(1.5+3)/2 = 2.25, 2.25^2 =5.0625, 5.0625 > 3;

(1.5+2.25)/2 = 1.875, 1.875^2 =3.515625;3.515625>3;

.

.

.

直到前后两次平均值只差小于自定义精度为止,代码如下:

public class APIsqrt {

	static double erfenSqrt(double x) {

		if (x < 0) {
			System.out.println("负数没事开什么方");
			return -1;
		}
		if (x == 0)
			return 0;

		final double _JINGDU = 1e-6;
		double _low = 0;
		double _high = x;
		double _mid = Double.MAX_VALUE;
		double last_mid = Double.MIN_VALUE;

		while (Math.abs(_mid - last_mid) > _JINGDU) {

			last_mid = _mid;
			_mid = (_low + _high) / 2;
			if (_mid * _mid > x)
				_high = _mid;
			if (_mid * _mid < x)
				_low = _mid;

		}
		return _mid;

	}

	public static void main(String[] args) {
		double x = 3;
		double root = erfenSqrt(x);
		System.out.println(root);
	}
}

测试结果:

1.732051134109497


5.计算(int)(sqrt(x))算法

PS:此算法非博主所写
原理:空间换时间,细节请大家自行探究,代码如下:

public class APIsqrt2 {
	final static int[] table = { 0, 16, 22, 27, 32, 35, 39, 42, 45, 48, 50, 53,
			55, 57, 59, 61, 64, 65, 67, 69, 71, 73, 75, 76, 78, 80, 81, 83, 84,
			86, 87, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104,
			106, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119,
			120, 121, 122, 123, 124, 125, 126, 128, 128, 129, 130, 131, 132,
			133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 144,
			145, 146, 147, 148, 149, 150, 150, 151, 152, 153, 154, 155, 155,
			156, 157, 158, 159, 160, 160, 161, 162, 163, 163, 164, 165, 166,
			167, 167, 168, 169, 170, 170, 171, 172, 173, 173, 174, 175, 176,
			176, 177, 178, 178, 179, 180, 181, 181, 182, 183, 183, 184, 185,
			185, 186, 187, 187, 188, 189, 189, 190, 191, 192, 192, 193, 193,
			194, 195, 195, 196, 197, 197, 198, 199, 199, 200, 201, 201, 202,
			203, 203, 204, 204, 205, 206, 206, 207, 208, 208, 209, 209, 210,
			211, 211, 212, 212, 213, 214, 214, 215, 215, 216, 217, 217, 218,
			218, 219, 219, 220, 221, 221, 222, 222, 223, 224, 224, 225, 225,
			226, 226, 227, 227, 228, 229, 229, 230, 230, 231, 231, 232, 232,
			233, 234, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239, 240,
			240, 241, 241, 242, 242, 243, 243, 244, 244, 245, 245, 246, 246,
			247, 247, 248, 248, 249, 249, 250, 250, 251, 251, 252, 252, 253,
			253, 254, 254, 255 };

	/**
	 * A faster replacement for (int)(java.lang.Math.sqrt(x)). Completely
	 * accurate for x < 2147483648 (i.e. 2^31)...
	 */
	static int sqrt(int x) {
		int xn;

		if (x >= 0x10000) {
			if (x >= 0x1000000) {
				if (x >= 0x10000000) {
					if (x >= 0x40000000) {
						xn = table[x >> 24] << 8;
					} else {
						xn = table[x >> 22] << 7;
					}
				} else {
					if (x >= 0x4000000) {
						xn = table[x >> 20] << 6;
					} else {
						xn = table[x >> 18] << 5;
					}
				}

				xn = (xn + 1 + (x / xn)) >> 1;
				xn = (xn + 1 + (x / xn)) >> 1;
				return ((xn * xn) > x) ? --xn : xn;
			} else {
				if (x >= 0x100000) {
					if (x >= 0x400000) {
						xn = table[x >> 16] << 4;
					} else {
						xn = table[x >> 14] << 3;
					}
				} else {
					if (x >= 0x40000) {
						xn = table[x >> 12] << 2;
					} else {
						xn = table[x >> 10] << 1;
					}
				}

				xn = (xn + 1 + (x / xn)) >> 1;

				return ((xn * xn) > x) ? --xn : xn;
			}
		} else {
			if (x >= 0x100) {
				if (x >= 0x1000) {
					if (x >= 0x4000) {
						xn = (table[x >> 8]) + 1;
					} else {
						xn = (table[x >> 6] >> 1) + 1;
					}
				} else {
					if (x >= 0x400) {
						xn = (table[x >> 4] >> 2) + 1;
					} else {
						xn = (table[x >> 2] >> 3) + 1;
					}
				}

				return ((xn * xn) > x) ? --xn : xn;
			} else {
				if (x >= 0) {
					return table[x] >> 4;
				}
			}
		}

		return -1;
	}
	public static void main(String[] args){
		System.out.println(sqrt(65));
		
	}
}
测试结果:8


6.最快的sqrt算法

PS:此算法非博主所写

这个算法很有名,大家可能也见过,作者是开发游戏的,图形算法中经常用到sqrt,作者才写了一个神级算法,和他那神秘的0x5f3759df,代码如下

#include <math.h>
float InvSqrt(float x)
{
 float xhalf = 0.5f*x;
 int i = *(int*)&x; // get bits for floating VALUE
 i = 0x5f375a86- (i>>1); // gives initial guess y0
 x = *(float*)&i; // convert bits BACK to float
 x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy
 return x;
}

int main()
{
  printf("%lf",1/InvSqrt(3));

   return 0;
}
测试结果:


感兴趣的朋友可以参考http://wenku.baidu.com/view/a0174fa20029bd64783e2cc0.html 是作者解释这个算法的14页论文《Fast Inverse Square Root》


7.一个与算法6相似的算法

PS:此算法非博主所写

代码如下:

#include <math.h>
float SquareRootFloat(float number) {
    long i;
    float x, y;
    const float f = 1.5F;

    x = number * 0.5F;
    y  = number;
    i  = * ( long * ) &y;
    i  = 0x5f3759df - ( i >> 1 );
    y  = * ( float * ) &i;
    y  = y * ( f - ( x * y * y ) );
    y  = y * ( f - ( x * y * y ) );
    return number * y;
}

int main()
{
  printf("%f",SquareRootFloat(3));

   return 0;
}
测试结果:





==================================================================================================

作者:nash_ 欢迎转载,与人分享是进步的源泉!

转载请保留原文地址http://blog.csdn.net/nash_/article/details/8217866

===================================================================================================

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值