找出两个已经排好序的数组的中位数

本文介绍了一种高效算法,用于在两个已排序数组中找到中位数,时间复杂度为O(m+n),空间复杂度为O(1)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题:

给两个已经排好序的数组,一个长度为 m (m >= 1), 一个长度为 n (n >= 1),找出这两个数组的中位数。时间复杂度要求为 O(m+n), 空间复杂度为 O(1)。

其实这个问题本身来讲是不难的,关键的关键,是对一些边界条件的处理。


思路:我们首先判断中位数的位置,如果 m+n 为奇数,那么中位数的位置是 第 (m+n+1)/2。 如果 m + n 为偶数,那么我们要找出第 (m+n)/2 和 第(m+n)/2 + 1, 然后求平均。

我们在两个数组上都分配一个“指针”指到起始位(假定A数组的指针为pa, B数组的指针为pb),然后根据它们值的大小,指针不断的向前推进,直到总的被遍历的数的个数为(m+n+1)/2 (奇数情况)或者为(m+n)/2 (偶数情况)。

我们在移动指针对数组中的数进行比较的时候,我们要考虑指针是否已经操过数组的大小,然后才能进行比较,这是一个非常值得注意的地方。

public float median(int[] A, int[] B) { int m = A.length; int n = B.length; int pa = 0; int pb = 0; // to check whether the median is one or two. boolean isEven = (m + n)%2 == 0 ? true : false; float median = 0; int i = 0; if (isEven == false) { while (true) { i++; if (pa >= A.length) { if (i == (m+n+1)/2) { median = B[pb]; break; } pb++; } else if (pb >= B.length) { if (i == (m+n+1)/2) { median = A[pa]; break; } pa++; } else if (A[pa] <= B[pb]) { if (i == (m+n+1)/2) { median = A[pa]; break; } pa++; } else { if (i == (m+n+1)/2) { median = B[pb]; break; } pb++; } } } else { int median1 = 0; int median2 = 0; while (true) { i++; if (pa >= A.length) { if (i == (m+n)/2) { median1 = B[pb]; median2 = (pb < n-1 && B[pb+1] <= A[pa]) ? B[pb+1] : A[pa]; median = (float) (median1 + median2)/2; break; } pb++; } else if (pb >= B.length) { if (i == (m+n)/2) { median1 = A[pa]; median2 = (pa < m-1 && A[pa+1] <= B[pb]) ? A[pa+1] : B[pb]; median = (float) (median1 + median2)/2; break; } pa++; } else if (A[pa] <= B[pb]) { if (i == (m+n)/2) { median1 = A[pa]; median2 = (pa < m-1 && A[pa+1] <= B[pb]) ? A[pa+1] : B[pb]; median = (float) (median1 + median2)/2; break; } pa++; } else { if (i == (m+n)/2) { median1 = B[pb]; median2 = (pb < n-1 && B[pb+1] <= A[pa]) ? B[pb+1] : A[pa]; median = (float) (median1 + median2)/2; break; } pb++; } } } return median; }






### 回答1中位数是指一组数据中处于中间位置的数,即将数据从小到大排后,位于中间位置的数。对于两个排好数组x和y,可以使用归并排的思想,将它们合并成一个有数组,然后找出这个数组中位数即可。具体步骤如下: 1. 定义一个新的数组z,长度为2n。 2. 使用归并排的思想,将x和y合并成一个有数组z。具体方法是,定义两个指针i和j,分别指向x和y的起始位置,比较x[i]和y[j]的大小,将较小的数放入z中,并将指向该数的指针向后移动一位,直到其中一个数组的所有数都放入了z中。 3. 如果x和y的长度不相等,将剩余的数依次放入z中。 4. 如果z的长度为偶数,中位数为z[n-1]和z[n]的平均值;如果z的长度为奇数,中位数为z[n]。 5. 返回中位数。 注意:在实际编程中,需要考虑数组越界的情况,以及处理浮点数的精度问题。 ### 回答2: 中位数是一个列中居于中间位置的数,对于已经排好数组而言,容易中位数,如果n为奇数,中位数就是第(n+1)/2个数;如果n为偶数,则中位数是第n/2和n/2+1个数的平均数。但是对于两个数组,如何得它们合并后的中位数呢? 一种思路是直接将两个数组合并成一个有数组,然后再按照上述方法中位数。但是时间复杂度为O(n),无法满足要。 另一种思路是采用递归的方式,不断缩小解问题的规模。首先找到x和y的中位数,分别记为m1和m2,比较m1和m2的大小,如果m1<m2,则中位数必然在x[m1:n-1]和y[0:m2]之间,即问题规模缩小为原来的一半;反之,中位数在x[0:m1]和y[m2:n-1]之间。进一步,如果问题规模为奇数,则找到第(n+1)/2小的数,如果为偶数,则找到第n/2和n/2+1小的数,然后它们的平均数。 递归结束条件为,x和y各自缩减到一个元素时,比较它们的大小,较小的数即为中位数。 该算法的时间复杂度为O(logn),满足要。 ### 回答3: 中位数是指一组数中大小排列中处于中间位置的数,当数的个数为偶数时,中位数为中间两个数的平均数。设x[ 0 : n - 1]和y[ 0 : n – 1 ]为两个数组,每个数组中含有n个已排好的数,要找到这两个数组合并后的2n个数的中位数。 一种简单而直接的做法是将两个数组合并成一个有数组,然后找到这个新数组中位数。可以用归并排的思想,在比较两个数组中的数的大小时,将较小的数放到新数组中,对应的数组索引+1,直到找到中位数或者新数组中存储了2n个数。如果2n为奇数,则新数组中第n个数即为中位数;如果2n为偶数,则新数组中第n和第n+1个数的平均数即为中位数。 时间复杂度为O(n),由归并排中每个元素只比较一次导致。该做法虽然简单有效,但需要额外的存储空间来存储新数组,占用的空间大小为O(n)。如果不希望占用额外的空间,还可以使用双指针的方法,分别从x和y两个数组中位数开始往两边扩展,每次排除掉一半的数据,直到找到合并后的2n个数的中位数。 具体做法为,首先找到两个数组自身的中位数,分别为xmid和ymid,若xmid小于ymid,则x数组的前xmid个元素和y数组的后n-xmid个元素一定在2n个数的中位数的左边;若xmid大于ymid,则x数组的后n-xmid个元素和y数组的前xmid个元素一定在2n个数的中位数的左边。根据这个规律,可以反复排除一半的数据,直到找到合并后的2n个数的中位数。 时间复杂度为O(logn),每一次排除了一半的数据,类似于二分查找的思想。这种做法不需要额外的存储空间,但需要特殊处理边界情况,比如xmid=0或n-1的情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值