凸包面积算法
1.选取p0作为y坐标最小的点,如果y坐标相等,选取x坐标最小的点
2.对剩余的点相对与p0点的极角进行排序
(比较叉积<http://blog.csdn.net/liufei_learning/archive/2010/10/14/5941947.aspx> )
3.去除极角相等的点,即距离最远的点
4.初始化堆栈
5.折线段拐向判断,若没有左转的时候出栈点,否则入栈
6.根据已有的点计算面积
凸包面积
Time Limit: 1000MS Memory Limit: 65536KB
Submissions: 38 Accepted: 10
Description
麦兜是个淘气的孩子。一天,他在玩钢笔的时候把墨水洒在了白色的墙上。再过一会,麦兜妈就要回来了,麦兜为了不让妈妈知道这件事情,就想用一个白色的凸多边形把墙上的墨点盖住。你能告诉麦兜最小需要面积多大的凸多边形才能把这些墨点盖住吗?现在,给出了这些墨点的坐标,请帮助麦兜计算出覆盖这些墨点的最小凸多边形的面积。
Input
多组测试数据。第一行是一个整数T,表明一共有T组测试数据。每组测试数据的第一行是一个正整数N(0< N < = 105),表明了墨点的数量。接下来的N行每行包含了两个整数Xi和Yi(0<=Xi,Yi<=2000),表示每个墨点的坐标。每行的坐标间可能包含多个空格。
Output
每行输出一组测试数据的结果,只需输出最小凸多边形的面积。面积是个实数,小数点后面保留一位即可,不需要多余的空格。
Sample Input
2
4
0 0
1 0
0 1
1 1
2
0 0
0 1Sample Output
1.0
0.0
Hint
Source
#include <iostream> #include <iomanip> #include <algorithm> using namespace std; struct Vertex { int x; int y; }; Vertex ver[107]; //根据叉积排序极角,当极角相等时距离远的点在前面,方便后面删除极角一样的点 bool cmp(Vertex ver1, Vertex ver2) { int x1,x2,y1,y2,s; x1 = ver1.x-ver[0].x; y1 = ver1.y-ver[0].y; x2 = ver2.x-ver[0].x; y2 = ver2.y-ver[0].y; s = x1*y2 - x2*y1; if(s>0 || s==0 && x1*x1+y1*y1>x2*x2+y2*y2) return true; else return false; } //线段拐向的判断 //若(p2 - p0) × (p1 - p0) > 0,则p0p1在p1点拐向右侧后得到p1p2。 //若(p2 - p0) × (p1 - p0) < 0,则p0p1在p1点拐向左侧后得到p1p2。 //若(p2 - p0) × (p1 - p0) = 0,则p0、p1、p2三点共线 inline int dig(int x0, int y0, int x1, int y1, int x2, int y2) { return (x2 - x0) * (y1 - y0) - (y2 - y0) * (x1 - x0); } //交换 void Swap(Vertex &ver1, Vertex &ver2) { Vertex temp; temp.x = ver1.x; temp.y = ver1.y; ver1.x = ver2.x; ver1.y = ver2.y; ver2.x = temp.x; ver2.y = temp.y; } int main() { double s,m; int t,p,n,i,j,k,a,b; int StackVer[107]; int pVer; int MinY; cin>>t; for (p=0; p<t; p++) { cin>>n; for (i=0; i<n; i++) cin>>ver[i].x>>ver[i].y; if(n<=2) { cout<<"0.0"<<endl; continue; } s=0; pVer=0; MinY = 0; for (i=1; i<n; i++) { if (ver[i].y<ver[MinY].y || ver[i].y==ver[MinY].y&&ver[i].x<ver[MinY].x) { MinY = i; } } Swap(ver[0],ver[MinY]); sort(ver+1,ver+n, cmp); k=2; //删除重复的点 for(i=2; i<n; i++) { if(dig(ver[0].x, ver[0].y, ver[i-1].x,ver[i-1].y, ver[i].x, ver[i].y) != 0) ver[k++] = ver[i]; } //堆栈初始化 StackVer[pVer++] = 0; StackVer[pVer++] = 1; StackVer[pVer++] = 2; //找到所有极点 for(i = 3; i < k; i++) { for(a = StackVer[pVer - 2], b = StackVer[pVer - 1]; ! (dig(ver[a].x, ver[a].y, ver[b].x, ver[b].y, ver[i].x, ver[i].y)< 0); a = StackVer[pVer - 2], b = StackVer[pVer - 1]) { pVer--; //删点 } StackVer[pVer++] = i; //加点 } //计算面积 while(pVer>=2) { a = StackVer[pVer - 2]; b = StackVer[pVer - 1]; m = dig( ver[0].x, ver[0].y,ver[b].x, ver[b].y,ver[a].x, ver[a].y)/2.0; if(m<0) m=-m; pVer--; s=s+m; } cout<<setiosflags(ios::fixed)<<setprecision(1)<<s<<endl; } return 0; }
PKU1873TheFortifiedForest(枚举+凸包) 题意: 有n棵树(2<=n<=15),每棵树有四个特征量(x[i], y[i], v[i], l[i]),(1 <= i <= n)其中(x[i], y[i])是该树在平面上的位置,v[i]为该树价值,l[i]为该树的树高,现在要求砍掉一些树来做围栏, 把剩下的树围起来,要求砍掉的树的价值和minValue最小,当minValue不唯一时,要求砍掉的树的数目最少? 思路:枚举 + 凸包 源代码: #include <iostream> #include <cmath> #include <algorithm> using namespace std; const int MAXN = 15; const double eps = 1e-7; struct Tpoint { int x, y; }; Tpoint point[MAXN], p[MAXN]; int nn, n, num, ans_cnt, cost, lstack, minimum; int mark[MAXN], stack[MAXN], ans[MAXN], l[MAXN],v[MAXN]; double ans_extra; inline int det(int x0, int y0, int x1, int y1, int x2, int y2) //计算叉积 { return (x1 - x0) * (y2 - y0) - (x2 - x0) * (y1 - y0); } inline int det(int x1, int y1, int x2, int y2) //计算叉积 { return x1 * y2 - x2 * y1; } bool cmp(Tpoint a, Tpoint b) //极角比较 { int a1 = a.x - point[0].x, b1 = a.y - point[0].y; int a2 = b.x - point[0].x, b2 = b.y - point[0].y; int p = det(a1, b1, a2, b2); return p > 0 || (p == 0 && a1 * a1 + b1 * b1 > a2 * a2 + b2 * b2); } inline double dist(Tpoint a,Tpoint b) //计算距离 { return sqrt((double)((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y))); } void init_convex() //初始化凸包 { int i, mn = 0; //min for(i = 1; i < nn; i ++) { //求最低点 if((point[i].y < point[mn].y) || (point[i].y == point[mn].y && point[i].x < point[mn].x)) mn = i; } swap(point[0],point[mn]); sort(point + 1, point + nn, cmp); //求极角序 num = 2; for(i = 2; i < nn; i ++) { //去掉极角重复的点 if(det(point[0].x, point[0].y, point[i-1].x, point[i-1].y, point[i].x, point[i].y) != 0) point[num ++] = point[i]; } } void convex() //求凸包 { int i, a, b; lstack = 0; stack[lstack ++] = 0; stack[lstack ++] = 1; stack[lstack ++] = 2; for(i = 3; i < num; i ++) { for(a = stack[lstack - 2], b = stack[lstack - 1]; //求凸性 det(point[a].x, point[a].y, point[b].x, point[b].y, point[i].x, point[i].y) <= 0; a = stack[lstack - 2], b = stack[lstack - 1]) { lstack --; //删点 } stack[lstack++] = i; //加点 } } void proc() { nn = 0; int i, tot = 0; for(i = 0; i < n; i ++) { if(! mark[i]) point[nn ++] = p[i]; else tot += l[i]; } if(nn > 2) { init_convex(); convex(); }else { //特殊情况 lstack = nn; for(i = 0; i < nn; i ++) stack[i] = i; } stack[lstack] = stack[0]; double now = 0; for(i = 0; i < lstack; i ++) { now += dist(point[stack[i]], point[stack[i + 1]]); } if(now <= tot + eps) { //方案合法,更新最优解 if((cost == minimum && n - nn < ans_cnt) || (cost < minimum)) { minimum = cost; ans_cnt = 0; for(i = 0; i < n; i ++) { if(mark[i]) ans[ans_cnt ++] = i; } ans_extra = tot - now; } } } void dfs(int k) { if(k == n) { if(cost <= minimum) proc(); }else { dfs(k + 1); mark[k] = 1; cost += v[k]; dfs(k + 1); cost -= v[k]; mark[k] = 0; } } int main() { int i, cases = 0; while(scanf("%d", &n) && n) { for(i = 0; i < n; i ++) scanf("%d %d %d %d", &p[i].x, &p[i].y, &v[i], &l[i]); memset(mark, 0, sizeof(mark)); minimum = INT_MAX; cost = 0; dfs(0); printf("Forest %d/n",++cases); printf("Cut these trees:"); for(i = 0; i < ans_cnt; i ++) printf(" %d", ans[i] + 1); printf("/nExtra wood: %.2lf/n/n", ans_extra); } return(0); } 源文档 <http://blog.sina.com.cn/s/blog_5c95cb070100d9t8.html>