- 博客(219)
- 资源 (9)
- 收藏
- 关注
原创 深度学习算法相关list
前馈神经网络,BP算法卷积神经网络(Convolutional Neural Network, CNN)循环神经网络(Recurrent Neural Network, RNN)与LSTMRNN/LSTM深度前馈网络原理及Batch训练原理自编码器(Auto-encoder)神经网络——优化器神经网络——激活函数...
2019-08-20 23:32:42 1030
原创 推荐算法相关list
贝叶斯平滑ctr计算item-based CFuser-based CFLFM/funk-SVDFM/FFMWide&Deep/DeepFM推荐系统常见问题推荐系统简介
2019-08-18 19:32:57 404
原创 机器学习算法相关list
感知机perceptron感知机k近邻法k-nearest neighbork近邻朴素贝叶斯法naive Bayes朴素贝叶斯决策树decision tree决策树逻辑斯谛回归与最大熵模型logistic regression/maximum entropy model逻辑回归与最大熵支持向量机support vector machinesSVM提升方法boosting提...
2019-08-18 19:26:33 278
原创 自然语言处理相关list
词向量词表(0/1)词频tf-idf(词的全局重要度)Ngram(相邻词顺序)NNLM(近义词 上下文) Word2vecELMo(多义词)模型朴素贝叶斯支持向量机逻辑回归CNN(短文本 打标签)LSTM(长文本 下文)双向LSTM(上下文)Attention Model(关键词)transformer(改进RNN里BPTT)BERT(MASK语言模型)...
2017-12-20 21:41:14 412
原创 聊聊最近热起来的数据科学
此外,如果KPI没有显⽰出持续增⻓的趋势,或者没有产⽣⼀定数量的销售线索(leads),使业务盈利,那么这样的营销活动也是低效的。值得注意的是,如果你⽆法判断哪个营销推⼴活动是真正有效的,那么很可能你所有的活动都是低效的。如果你也想运⽤数据科学来驱动商业决策,如果你也想从事高薪的数据科学工作,这里,为你准备了⼀个免费的知识锦囊:数十本数据分析和因果推断电⼦书籍!这些书籍都是数据科学领域的经典之作,涵盖了数据分析的基础知识、因果推断的理论以及数据科学实战应⽤等,适合各行业对数据科学感兴趣的读者阅读。
2023-06-28 22:38:55 123
原创 拒绝采样小记
section 1拒绝采样最关键的部分,搞个矩形、向矩形里投点等等,所做的一切都是为了获得一个密度曲线所围成区域的均匀分布。只要能获得这样一个在密度曲线下满足均匀分布的样本,我们就可以获得与该密度曲线相匹配的随机变量的采样样本。方法是,只需把每个蓝点的横坐标提取出来,这些横坐标所构成的样本就是我们的目标样本。step1:用一个矩形将这个密度曲线套起来,把密度曲线 框在一个矩形里。step2:向矩形里随机投点10000次(虚值)。随机投点意味着在矩形这块区域内,这些点是满足均匀分布的。step3:有
2022-04-12 21:33:03 1369
原创 Redis-哈希
简介REmote DIctionary Server(Redis)是一个开源的使用 ANSI C 语言编写、遵守 BSD 协议、支持网络、可基于内存、分布式、可选持久性的键值对(Key-Value)存储数据库,并提供多种语言的 API。Redis运行在内存中 但是可以持久化到磁盘,所以在对不同数据集进行高速读写时 需要权衡内存,因为数据量不能大于硬件内存。Redis的数据结构类型(Redis值value的类型)有5种:string(字符串),hash(哈希),list(列表),set(集合)及zset(
2021-06-15 19:50:03 922
原创 Docker容器
虚拟化:一种资源管理技术docker实现轻量级的操作系统虚拟化解决方案docker的基础是linux容器技术,面向服务的架构CS(客户端-服务器,可命令行操作)硬件 - 操作系统R - 虚拟机/docker引擎 - 虚拟机里安操作系统V/docker与下层R共用一个操作系统yum安装docker,设置docker镜像源(1)安装yumsudo yum update -y 把yum包更新到最新(-y遇到yes/no选项自动选yes)sudo yum install -y yum-utils
2020-08-27 09:31:04 1025
原创 机器学习算法——demo
为脑残的面试问题而生,哈哈~(1)LR为什么不可以用MSE作为损失函数MSE 会有梯度消失现象MSE 的导数非凸函数,求解最优解困难
2020-07-16 16:44:07 1299
原创 Tensorflow——demo
tensorflow单机多卡训练TensorFlow在1.13版本里发布的tf.distribute API 支持单机多卡分布式训练。该API支持各种分布式Strategy切换:MirroredStrategy用于单机多卡 数据并行 同步更新的情况,在每个GPU上保存一份模型副本,模型中的每个变量都镜像在所有副本中。这些变量一起形成一个名为MirroredVariable的概念变量。通过apply相同的更新,这些变量保持彼此同步。镜像策略用了高效的All-reduce算法来实现设备之间变量的传递
2020-07-13 19:54:48 1048
原创 词向量——demo
word2vec和BERT,都是语言表示中的里程碑式的工作,前者是词嵌入范式的代表,后者是预训练范式的代表。一个好的语言表示 除了建模一词多义现象以外,还需要体现词的复杂特性,包括语法、语义等。word2vec由“词的分布式表示假设(一个单词的意思 由频繁出现在该词 上下文的词 给出)”出发,最终得到一个look-up table,每个单词被映射到唯一一个稠密向量上。静态词表示,不考虑上下文,无法处理一词多义问题。BERT使用Transformer(中的编码器)作为特征抽取器,配合MLM这样的降噪
2020-07-13 15:16:15 1053
原创 Embedding前沿了解
内容来自 https://mp.weixin.qq.com/s/j34nJGomvR23ZJiqIFMoAQQ:海量稀疏特征,如何找到好的特征 Embedding 表达方式?(1)对于序列行为中的 Item Embedding,拥有怎样性质的 Embedding 表达方式是较好的?(2)对于非行为序列的推荐模型,关于特征 Embedding,大家常规采用的做法是:将特征的 Embedding Size 作为超参,通过手工测试来寻找好的 Embedding 大小。然而,是否有更好的方式?A1:Res-
2020-05-29 18:46:20 1107
原创 pyspark.ml特征变换模块
pyspark.ml 2.1ml模块的算子是基于dataframe构建的:(1)ML Pipeline APIs快速构建ML pipeline的API(2)pyspark.ml.param module(3)pyspark.ml.feature module(4)pyspark.ml.classification module(5)pyspark.ml.clustering modu...
2019-10-15 18:04:39 2553
原创 awk文本筛选
awk是处理文本文件的一个应用程序,几乎所有 Linux 系统都自带这个程序。它依次处理文件的每一行,并读取里面的每一个字段。[engine@client2v ~/yy1]$ cat demo.txt this+is+a+demo+for+awkhave+a+good+time+exercising+awkenjoy+yourselfawk处理文本(1)awk action file...
2019-10-12 22:00:36 2465 1
原创 word2vec-google code
Google code word2vec toolkittooklit project introduction把词看成向量空间上的一个点,distance计算向量空间上点与点的距离代码及数据集下载google-code word2vectext8数据集训练...
2019-09-19 15:17:18 1471
原创 Spark submit案例
准备文件及脚本层级build用于存放scala编译后的类,src用于存放scala源码compilescala.sh是编译命令,run_wordcount.sh是以spark submit形式向集群提交任务命令$ lsbuild compilescala.sh run_wordcount.sh srcscala源码task1:词频统计$ cat ./src/wordcount...
2019-08-19 17:22:11 1625
原创 贝叶斯平滑ctr计算
更新Beta分布里的alpha和beta参数Beta(a,b)=θa−1(1−θ)b−1B(a,b),B函数是一个标准化函数\displaystyle Beta(a,b)=\frac{\theta^{a-1}(1-\theta)^{b-1}}{B(a,b)},B函数是一个标准化函数Beta(a,b)=B(a,b)θa−1(1−θ)b−1,B函数是一个标准化函数用矩估计估计出来的参数alpha和beta => 给ctr计算做平滑np.random.seed(0)class HyperParam
2019-08-19 16:45:46 1396
原创 Scala文件操作
写文件用java中 的 I/O 类 (java.io.File),如果文件不存在,直接创建新文件write新内容;如果文件存在,会删去文件原有内容write新内容。import java.io._object file_learn { def main(args:Array[String]): Unit ={ val writer = new PrintWriter(new Fi...
2019-08-19 11:30:05 293
原创 类别不均衡问题
问题背景机器学习建模分类问题里,各个类别样本量差异较大时,就会出现类别不均衡问题。e.g.如果有99999个无症状病例,1个有症状病例,即使训练的学习器将所有样本识别成无症状病例,准确率也高达99.9%;但是这样的学习器没有任何价值,无任何鉴别有症状病例的价值。常用类别均衡方法以下假设正例样本数远小于负例样本数:(1)欠采样欠采样的代表做法是利用集成学习机制,将反例划分成若干个集合 供不同学习器使用。(2)过采样过采样不能简单地对正例样本进行重复采样,否则会导致严重的过拟合。过采样的代表性算法
2019-08-18 19:17:23 414
原创 C++标准模板类STL
【stack】1.empty() 堆栈为空则返回真2.pop() 移除栈顶元素3.push() 在栈顶增加元素4.size() 返回栈中元素数目5.top() 返回栈顶元素【vector】1.push_back() 在数组的最后添加一个数据2.pop_back() 去掉数组的最后一个数据3.at() 得到编号位置的数据4.begin() 得到数组头的指针5.end() 得到数组的最后一个单元+1的指针6.front() 得到数组头的引用7.back() 得到数组的最后一个单元的引
2019-08-18 14:00:06 726
原创 深度推荐模型包DeepCTR
DeepCTR包主要是对目前的一些“基于深度学习的点击率预测算法”进行了实现,官方文档参考本文主要记录DeepFM算法的相关操作细节。实验数据prefix:用户输入(query前缀)query_prediction:预测的用户完整需求查询词,最多10条;预测的查询词可能是前缀本身,数字为统计概率title:文章标题tag:文章类型label:是否点击0/1import pandas as pdimport numpy as npimport lightgbm as lgbfrom sk
2019-08-18 13:29:57 793
原创 Bert文本分类
Bert是一种更合理的语言模型,基于bert预训练模型fine-tune可以完成文本分类、问答匹配等任务。本文主要记录使用bert预训练语言模型做二分类文本分类的实验过程。源码下载:https://github.com/google-research/bert预训练模型版本:(1)chinese_L-12_H-768_A-12对应BERT-Base, Chinese: Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads,
2019-08-18 12:42:51 1086 1
原创 分布式机器学习训练方案
分布式机器学习训练主流方案:Spark MLlib、Parameter Server、Tensorflow。分布式:指计算节点之间,不共享内存,需要通过网络通信交换数据。Spark建立在大量廉价计算节点上,这些节点可以是廉价主机、也可以是虚拟的Docker容器。Spark将程序拆解成任务DAG,在并行处理DAG过程,关键是找到哪些部分可以并行处理,哪些必须shuffle和reduce。shuffle和reduce操作,决定了纯并行处理阶段的边界,依据此 可以将DAG分割成不同的并行处理stage。
2019-08-17 21:51:32 587
原创 大数据平台几种架构对比
大数据领域的奠基石,毫无疑问,是google 2003年发表的Big Table、Google File System和Map Reduce三篇论文。大数据平台的发展:批处理、流计算、全面融合。批处理海量数据存储在HDFS,通过Map Reduce框架实现分布式计算。但“分布式存储+MR”的架构只能批处理 已经落到磁盘的静态数据,无法再数据采集传输等流动过程处理数据。数据处理延迟较大,影响数据的时效性应用。流计算在数据流产生及传递过程,流式地消费并处理数据。在每个“时间窗口”内的数据,被短暂缓存并
2019-08-17 20:31:50 475
原创 推荐系统特征维度
在推荐系统中,特征的本质是“对某个行为相关信息的抽象表达”。抽取特征时,尽量保留“推荐环境及用户行为过程中的所有有用信息”,摒弃冗余信息。用户行为数据显性反馈:评分、点赞等;隐性反馈:点击、播放时长、加购等。用户行为类特征向量:(1)代表用户行为的物品id序列,转化成multi-hot向量。(2)预训练好的物品embedding向量,再average pooling或attention 生成历史行为embedding向量。用户关系数据社交网络,显性关系:好友、关注;隐形关系:点赞、同时对某一物
2019-08-17 17:43:11 1251
原创 调参方法-超参数优化
模型参数:(1)通过学习获得(2)学习开始前设定,没办法在学习过程得到,如学习率、隐层数。把第(2)类参数称为超参数;优化超参数,可以提高模型在独立数据集上的性能;常用交叉验证法,评估不同超参数下,模型的泛化性能。sklearn包提供的获取候选参数搜索方法:(1)GridSearchCV(2)RandomizedSearchCV。GridSearchCV对一个分类器进行超参数优化,通过优化阶段未使用的验证集进行评估。该方法适用于小数据集;大数据集参数组合较多时,尝试使用坐标下降法调参。即,每次贪心
2019-08-16 17:34:28 903
原创 TextCNN文本分类
textCNN网络结构textCNN 只有一层卷积,一层max-pooling, 最后将输出外接softmax 来n分类。(1)对句子分词后onehot编码,对应6*5矩阵;(2)4*5的卷积核作用后,产生3*1的feature-map;(3)map-pooling取feature-map最大值;(4)各种卷积核过滤、max-pooling后横向concat,全连接输出层。tensorflow搭建网络及测试案例#coding=utf-8import tensorflow as tfimpor
2019-08-15 19:04:37 395
原创 pagerank算法
问题背景在使用搜索引擎时,保持网页与查询一定相关度的基础上,PRPRPR值可以提供不错的排序依据。算法的基本思想“互联网上的网页”——>“图的节点”“网页的出链”——>“指向其他节点的一条有向边”“网页的入链”——>“其他节点指向这个节点的有向边”“整个网络”——>“一张有向图”网页质量的评估遵循以下两个假设(1)一个网页的入链越多,网页质量越高(2)一个...
2019-06-27 22:53:04 306
原创 bm25算法
bm25算法,常用作搜索相关性评分。bm25算法主要思想对Query进行语素解析,生成语素qi;然后,对于每个搜索结果d,计算每个语素qi与d的相关性得分,最后,将“一个Query各个qi相对于d的相关性得分”加权求和,从而得到“Query与d的相关性得分”。bm25算法原理及公式推导一条Query与搜索结果的任意doc之间相关性分数Score(Q,d)=∑inWiR(qi,d)Scor...
2019-06-14 14:27:34 2702
原创 Hadoop学习之MapReduce计算框架
批处理模式是一种最早进行大规模数据处理的模式。批处理主要操作“大规模静态数据集”,并在整体数据处理完毕后返回结果。MapReduce 计算架构提供的主要功能(1)任务调度将一个计算作业(Job)划分成多个计算任务(Tasks)为划分的Tasks分配和调度计算结点(Map 结点或 Reduce 结点)监控计算结点的执行状态Map 结点执行的同步控制计算性能优化处理例如,对最慢的计算任...
2019-06-06 20:26:47 1024 1
原创 shell用法
单引号、双引号、反引号(1)单引号’ '内剥夺所有字符的特殊含义,所有字符都是单纯的字符串而没有特殊功能。如,$取参数等命令是无效的。(2)双引号" "中除了字符串,特殊字符是没有被转义的。如,$等特殊字符一样可以使用其功能。(3)反引号``是命令替换,即把命令输出结果传给入变量。[filter@idxdb1 ~/yy]$ cat test_yh.sh #!/bin/basha=...
2019-06-03 15:20:20 292
test_ctr.zip
2020-05-29
underexpose_train.zip
2020-05-29
tfrecord数据.zip
2020-05-17
word2vec.zip
2019-09-19
README.md文档
2019-08-19
cnews.zip 新浪新闻RSS订阅频道10类文本数据
2019-07-17
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人