最大优先队列--【算法导论】

堆排序是一个优秀的算法,但是在实际应用中,如快速排序的性能会优于它。但是堆排序有着另外的作用,如优先队列

与堆排序一样,优先队列也有两种形式:最大优先队列,最小优先队列(暂且讨论最大优先队列)

优先队列:是一种用来维护由一组元素构成的集合S的数据结果,其中的每个元素都有一个相关的值,称为关键字

最大优先队列支持:

即:对最大优先队列进行插入,MaxHeapInsert

返回最大优先队列的最大值,HeapMax

去掉最大值并且返回该值,HeapExtractMax

将第x个元素的值改为k,其中k>=x的原来的值,HeapIncreaseKey

总之,即是在堆排序的基础上进行操作:

返回最大值

去掉最大值并且返回该值:

将第x个元素的值改为k,其中k>=x的原来的值:

最后还有一个插入

代码:

#include <iostream>
#include <cstdlib>

using namespace std;

void MaxHeapIfy(int A[], int length, int i)  //维护
{
    int left = i * 2;  //节点i的左孩子
    int right = i * 2 + 1; //节点i的右孩子节点
    int largest = i;  //默认父节点

    if (left <= length && A[largest] < A[left])  //左孩子比父节点大
    {
        largest = left;
    }

    if (right <= length && A[largest] < A[right])  //右孩子最大
    {
        largest = right;
    }

    if (i != largest)   //最大值不是父节点
    {
        int temp = A[largest]; //exchange
        A[largest] = A[i];
        A[i] = temp;

        MaxHeapIfy(A, length, largest);  //继续维护
    }
}

void BuildMaxHeap(int A[], int length)  //建堆
{
    for (int i = length / 2; i >= 1; i--)
    {
        MaxHeapIfy(A, length, i);
    }
    cout<<"建堆情况:";  //
    for(int i = 1; i <= length; i++)
        cout<<A[i]<<"  ";
    cout<<endl;
}

void HeapSort(int A[], int length)  //堆排
{
    int temp;

    for(int i = length; i >= 2;)
    {
        temp = A[i];    //交换堆的第一个元素和堆的最后一个元素
        A[i] = A[1];
        A[1] = temp;
        i--;        //堆的大小减一
        MaxHeapIfy(A, i, 1);  //调堆
    }
}

int HeapMax(int A[])
{
    return A[1];
}

int HeapExtractMax(int A[], int &length)
{
    if(length < 1)
    {
        cout<<"heap underflow";
        return 0xffffffff;
    }

    int max = A[1];
    A[1] = A[length];
    length--;
    MaxHeapIfy(A, length, 1);

    cout<<"建堆情况:";  //
    for(int i = 1; i <= length; i++)
        cout<<A[i]<<"  ";
    cout<<endl;
    return max;
}

void HeapIncreaseKey(int A[], int i, int key, int length)  //将元素i的关键字值增加到K(假设k>=i的关键字值)
{
    if(key < A[i])
    {
        cout<<"new key is smaller than current key";
        //return 0;
    }

    A[i] = key;
    while(i > 1 && A[i / 2] < A[i])  //插入值的父节点小于该值,更新
    {
        int temp = A[i];
        A[i] = A[i / 2];
        A[i / 2] = temp;
        i = i / 2;
    }

    cout<<"建堆情况:";  //
    for(int i = 1; i <= length; i++)
        cout<<A[i]<<"  ";
    cout<<endl;
}

void MaxHeapInsert(int A[], int key, int &length)  //插入
{
    length++;
    A[length] = -1;
    HeapIncreaseKey(A, length, key, length);
}

void Show(int A[], int length)  //输出排序效果
{
    cout<<"排序结果:";
    for(int i = 1; i <= length; i++)  //cout
        cout<<A[i]<<"  ";
    cout<<endl;
}

int main()
{
    int A[] = {0, 4, 1, 3, 2, 16, 9, 10, 14, 8, 7};

    int length = sizeof(A) / sizeof(int) - 1; //

    BuildMaxHeap(A, length);  //建堆

    int max = HeapMax(A);  //返回最大值
    cout<<"最大值是:"<<max<<endl;

    max = HeapExtractMax(A, length);  //去掉最大值,同时返回该值
    cout<<"最大值是:"<<max<<endl;

    int i, key;
    i = 9;  //第i个元素
    key = 15;  //关键值改变
    HeapIncreaseKey(A, i, key, length);  //改变关键值

    MaxHeapInsert(A, 16, length);  //插入值16

    HeapSort(A, length);  //排序
    Show(A, length); //显示

    return 0;
}

输出结果分析

第一行BuildMaxHeap(A, length);是对初始数据进行建堆的情况(int A[] = {0, 4, 1, 3, 2, 16, 9, 10, 14, 8, 7}中的A[0]元素只做填充效果);

第二行int max = HeapMax(A); cout<<"最大值是:"<<max<<endl;通过HeapMax得到最大优先队列的最大值;

第三、四行 max = HeapExtractMax(A, length);cout<<"最大值是:"<<max<<endl;去掉最大值,输出此时的建堆情况,然后返回最大值并输出;

第五行HeapIncreaceKey(A, i, key, length);//改变关键值,将第i个元素的值改为key,默认是key>=A[i],输出此时建堆情况;

第六行MaxHeapInsert(A, 16, length);对最大优先队列插入值,重新建堆,输出;

第七行HeapSort(A, length); Show(A, length);进行排序,并输出结果;

o(∩_∩)o


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值