归并算法排序
算法思想
- 1.简单地将原始序列划分为两个子序列
- 2.分别对每个子序列递归排序
- 3.最后将排好序的子序列合并为一个有序的序列,即归并过程
归并过程为:比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1;否则将第二个有序表中的元素a[j]复制到r[k]中,并令j和k分别加上1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复制到r中从下标k到下标t的单元。归并排序的算法我们通常用递归实现,先把待排序区间[s,t]以中点二分,接着把左边子区间排序,再把右边子区间排序,最后把左区间和右区间用一次归并操作合并成有序的区间[s,t]。
java 代码
/**
* 内部排序算法之归并排序
* 默认按照从小到大进行排序操作
* @author 小浩
* @创建日期 2015-3-27
*/
public class Test{
public static void main(String[] args) {
//需要进行排序的数组
int[] array=new int[]{8,3,2,1,7,4,6,5};
//输出原数组的内容
printResult(array);
//归并排序操作
sort(array,0,array.length-1);
//输出排序后的相关结果
printResult(array);
}
/**
* 归并排序
* @param array
*/
private static void sort(int[] array,int i,int j) {
if(i<j)
{
int middle=(i+j)/2;
//递归处理相关的合并事项
sort(array,i,middle);
sort(array,middle+1,j);
merge(array,i,middle,j);
}
}
/**
* 合并相关的数组内容
* 同时使合并后的数组仍然有序
* @param array
* @param i
* @param middle
* @param j
* 4 5 6 9 10 11
*
*/
private static void merge(int[] array, int i, int middle, int j) {
//创建一个临时数组用来存储合并后的数据
int[] temp=new int[array.length];
int m=i;
int n=middle+1;
int k=i;
while(m<=middle&&n<=j)
{
if(array[m]<array[n])
temp[k++]=array[m++];
else
temp[k++]=array[n++];
}
//处理剩余未合并的部分
while(m<=middle)
{
temp[k++]=array[m++];
}
while(n<=j)
{
temp[k++]=array[n++];
}
//将临时数组中的内容存储到原数组中
while(i<=j)
{
array[i]=temp[i++];
}
}
/**
*
* 输出相应数组的结果
* @param array
*/
private static void printResult(int[] array) {
for(int value:array)
System.out.print(" "+value+" ");
System.out.println();
}
/**
* 交换数组中两个变量的值
* @param array
* @param i
* @param j
*/
private static void swap(int[] array,int i,int j){
int temp=array[i];
array[i]=array[j];
array[j]=temp;
}
}
排序算法的基本概念的讲解
时间复杂度:需要排序的的关键字的比较次数和相应的移动的次数。
空间复杂度:分析需要多少辅助的内存。
稳定性:如果记录两个关键字的A和B它们的值相等,经过排序后它们相对的位置没有发生交换,那么我们称这个排序算法是稳定的。