话说POJ这完全背包的题并不多,而且这个也不是很裸,因为股票的价格都是1000的倍数,所以价格都除以1000,整个背包的容量也除以1000, 这样复杂度就降下来了,然后每年的话,由于有收益,所以背包容量还会变化
基本原理参考背包问题九讲。其核心部分与0-1背包中里面那层循环是反过来的
F[0::V ] = 0
for i = 1 to N
for v = Ci to V
F[v] = max(F[v]; F[v-Ci]+Wi)
经过试验这个是无法用0-1背包中的下界优化的 但是之前是可以对物品优化,比如Ci > Cj 但是Wi < Wj 所以这类物品肯定不要。然后相同花费的价值小的也不会要,这样能降很多的复杂度
/* ID: sdj22251 PROG: subset LANG: C++ */ #include <iostream> #include <vector> #include <list> #include <map> #include <set> #include <deque> #include <queue> #include <stack> #include <bitset> #include <algorithm> #include <functional> #include <numeric> #include <utility> #include <sstream> #include <iomanip> #include <cstdio> #include <cmath> #include <cstdlib> #include <cctype> #include <string> #include <cstring> #include <cmath> #include <ctime> #define LOCA #define MAXN 10005 #define INF 100000000 #define eps 1e-7 #define L(x) x<<1 #define R(x) x<<1|1 using namespace std; int f[45300]; int main() { #ifdef LOCAL freopen("d:/data.in","r",stdin); freopen("d:/data.out","w",stdout); #endif int t, v, m, i, j, year, w[12], c[12]; scanf("%d", &t); while(t--) { scanf("%d%d", &v, &year); scanf("%d", &m); int tmp = v; for(i = 1; i <= m; i++) { scanf("%d%d", &c[i], &w[i]); c[i] /= 1000; } while(year--) { v = tmp / 1000; for(i = 0; i <= v; i++) f[i] = 0; for(i = 1; i <= m; i++) { for(j = c[i]; j <= v; j++) f[j] = max(f[j], f[j - c[i]] + w[i]); } tmp += f[v]; } printf("%d\n", tmp); } return 0; }