握拍方法

在羽毛球各项基本技术中,握拍是最简单但又最易被初学者疏忽的一项技术。看起来,握拍很容易,谁都能抓起球拍挥舞几下,但要想提高球技,打起球来得心应手,就非得从握拍这最简单、最基本的一环学起,掌握适合自己的握拍方法。以下是几种基本握拍方法的图例。
[img]http://www.bbeshop.com/image3zs/grip_cont1.jpg[/img]
[img]http://www.bbeshop.com/image3zs/grip_cont2.jpg[/img]
[img]http://www.bbeshop.com/image3zs/grip_cont2.jpg[/img]
大陆式握拍法
[img]http://www.bbeshop.com/image3zs/grip_east1.jpg[/img]
[img]http://www.bbeshop.com/image3zs/grip_east2.jpg[/img]
[img]http://www.bbeshop.com/image3zs/grip_east3.jpg[/img]
东方式握拍法
[img]http://www.bbeshop.com/image3zs/grip_west1.jpg[/img]
[img]http://www.bbeshop.com/image3zs/grip_west2.jpg[/img]
[img]http://www.bbeshop.com/image3zs/grip_west3.jpg[/img]
西方式握拍法
[img]http://www.bbeshop.com/image3zs/grip_back1.jpg[/img]
[img]http://www.bbeshop.com/image3zs/grip_back2.jpg[/img]
[img]http://www.bbeshop.com/image3zs/grip_back3.jpg[/img]
反手握拍法

 
握拍方法总体分正手握拍和反手握拍两种。下面分别加以介绍。

(一) 正手握拍

正确的握拍方法是先用左手拿住球拍杆,使拍面与地面垂直,然后张开右手,使手掌下部(小鱼际)靠在球拍打握柄底托,虎口对着球拍柄窄的一面,小指、无名指、中指自然地并拢,食指与中指稍稍分开,自然地弯曲并贴在球拍柄上。

在击球之前,握拍一定要放松、自然,在击球的一刹那才紧握球拍。

(二)反手握拍

一般说来,反手握拍有两种:一种是在正手握拍的基础上,把球拍框往外转,拇指伸直贴在拍柄的宽面上,食指、中指、无名指、小指并拢。另一种是正手握拍把球拍框外转,拇指贴在球拍柄的棱上,食指、中指、无名指、小指并拢。反手握拍时,手心与球柄之间要留有空隙,这样握拍有利于手腕力量和手指力量的灵活运用。

在了解以上正确的握拍方法之后,应对照一下自己以前的习惯握法,如出现下面几种错误握法,应尽快加以纠正:拳握法,即一把抓;食指伸直按在拍柄上部;虎口贴在拍柄宽面;柄端露出太长。

正确的握拍学起来容易,但在实际运用中却要花一定的功夫才能掌握。因为在击球要领还未掌握时,握拍常容易走样,以致动作重新回到原来的错误习惯上去。所以,在练习击球时,要随时提醒自己,检查握拍是否正确,经过一段时间后,就会形成正确的握拍习惯。
内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略与效果评估体系,涵盖当前企业传播面临的预算、资源、内容与效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势与发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化与GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理与舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率与ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放与GEO优化,提升品牌在AI搜索中的权威性与可见性;④通过数据驱动评估体系量化品牌影响力与销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析与工具指南进行系统学习,重点关注媒体适配性策略与GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值