羽球技术——发球

发球是羽毛球基本的重要的技术之一。羽毛球发球虽不能象乒乓球发球那样使球产生各种旋转,但它可以通过不同的发球手法,发出不同弧度、不同落点的球来控制对方,为本方创造进攻得分的机会。因此,羽毛球的发球应引起初学者的充分重视。

    发球可分为正手发球和反手发球。一般来说,发网前球、平快球、平高球均可以用正手发球或反手发球的技术来完成,而发高远球,则须采用正手发球。

1、正手发球

    发球站位    单打发球在中线附近,站在离前发球线约1米左右。双打发球站位可靠近前发球线。

    准备姿势    身体左肩侧对球网,左脚在前,右脚在后,重心在右脚上,右手持拍向右后侧举起,肘部放松微屈,左手拇指、食指和中指夹住球,举在胸腹间。发球时,身体重心由右脚移至左脚。

    用正手发球,不论是发何种弧线的球,其发球前的姿势都应该一致,这样就会给对方的接发球造成判断上的困难。

    下面分别介绍用正手发球动作发出四种不同弧线的球的技术动作。

    高远球

    球的运行轨迹又高又远、下落时与地面垂直、落点在对方场区底线附近的球叫高远球。单打比赛时,常采用这种发球迫使对方退到最远的底线去接发球。如果发出的高远球质量好,就可在一定程度上限制对方一些进攻技术的发挥,使对方在接高远球时不容易马上组织进攻。在对方体力不支时,发高远球也可以使对方消耗更多的体力。

    发球动作要领    发球前准备姿势。发球时,左手把球举在身体的右前方并自然放下,使球下落,右手同时持拍由大臂带动小臂,从右后方沿着身体向前并向左上方挥动。当球落到右手臂向前下方伸直能触到球的一刹那,握紧球拍,并利用手腕的力量向前上方发力击球。击球之后,球拍顺势向左上方挥动缓冲。

    发高远球时易出现的错误     动作僵硬;放球与挥拍配合不当;击球点靠近身体或离得太远;握拍太紧,以致力量发挥不出;发球后,球拍未顺势向左上方挥动缓冲,而是挥向了右上方等等。在发高远球时,如果出现上述错误动作就应认真对照发高远球的动作要领,并参看“基本技术练习方法”中发球的练习方法。

    平高球

    这是一种比高远球低、速度较高远球快、具有一定攻击性的球。

    发球动作要领     发球前准备姿势同发高远球。发球的动作过程大致同发高远球,只是在击球的一刹那,小臂加速带动手腕向前上方挥动,拍面要向前上方倾斜,以向前用力为主。发平高球时要注意发出球的弧线以对方接球时伸拍打不着球的高度为宜,并应发到对方场区底线。

    平快球

    这种球比平高球的弧线还要低、速度还要快。在对方反应较慢、站位较前、动作幅度较大的对手或是初学者时,效果往往很好。

    发球动作要领     准备姿势亦同发高远球。站位比发平高球稍后些(防对方很快回到本方后场)充分利用前臂带动手腕爆发力向前方用力,球直接从对方的肩稍上高度越过,直攻对方后场。发平快球关键是出手的动作要小而快,但前期动作应和发高远球一致。发平快球时还应注意不要过手、过腰犯规。

    网前球

    发网前球是在双打中主要采用的发球技术。单打比赛时,如发高球,怕遭到对方球速较快的直接攻击时;或为了主动改变发球方式借以调动对方时采用。

    发球动作要领    准备姿势同发高远球。击球时,握拍要放松,大臂动作要小,主要靠小臂带动手腕向前切送,用力要轻。发网前球时应注意手腕不能有上挑动作,另外,落点要在前发球线附近,发出的球要贴网而过,这可免遭对方扑杀。

2、反手发球

    反手发球的特点是动作小、出球快、对方不易判断。在双打比赛中多采用此发球技术。

    发球站位   站在前发球线后10——50厘米及发球区中线的附近,也可以站在前发球线及场地边线附近的地方(双打比赛中,从右场区发球时可以看到)。

   准备姿势    面向球网,两脚前后站立(左脚或右脚在前均可),上体稍前倾,身体重心在前脚上。右手反手握拍,左手拇指、食指和中指捏住球的二三根羽毛,球托明显朝下(避免犯规),球体与拍面平行或球托对准拍面放在拍面前方。

    发球动作要领    击球时,小臂带动手腕朝前横切推送。发网前球时,用力要轻,主要靠“切”送;发平快球时,发力要突然,击球时拍面要有“反压”动作

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值